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1 Einleitung

1.1 Warum Kl und Datenanalyse fiir Lehrer:innen?

Vielen Dank an Amelie Mihlmeyer, Mara Prehn und Timotheus Tevs fiir Ihre
Beitrage, die bei der Enstehung der folgendenen Einleitung geholfen haben.

Kiinstliche Intelligenz und Datenanalyse wird fiir den Lehrer:innenberuf zuneh-
mend wichtig. Wissen in diesem Bereich trégt zur Verbesserung der Unterrichts-

qualitdt und zur Forderung von Datenkompetenz und digitaler Miindigkeit bei.

In einer zunehmend digitalisierten Welt und mit dem Aufkommen von KI ge-
winnen Daten auch im Bildungsbereich eine immer groflere Bedeutung. Wenn
Lehrer:innen lernen, diese Daten zu verstehen und zu nutzen, kénnen Sie ihren
Unterricht dadurch verbessern. Schon bei der Auswahl und Nutzung von digi-
talen Lernangeboten spielt Datenanalyse eine wichtige Rolle. Lehrkréfte miissen
einschéitzen konnen, welche Apps und Plattformen péddagogisch sinnvoll sind und
wie zuverlissig ihre Datenauswertung funktioniert. Nur wenn sie verstehen, wie
diese digitalen Tools Daten erheben und interpretieren, kénnen sie deren Ergeb-
nisse kritisch hinterfragen und gezielt im Unterricht einsetzen. Auf diese Wei-
se lassen sich verschiedene digitale Lernméglichkeiten vergleichen und fundier-
te Entscheidungen dariiber treffen, welche Anwendungen den Lernfortschritt der

Schiiler:innen tatsachlich unterstiitzen.

Ein grundlegendes Verstédndnis von Datenanalyse und Statstik ermdéglicht Lehr-
kriften, Lernprozesse gezielt zu beobachten, Daten selbst zu erheben und erhobene
Daten richtig zu interpretieren. Die Arbeit mit Ergebnissen digitaler Lernangebo-
te oder auch Lernstandserhebungen erméglicht es, den Unterricht evidenzbasiert
zu gestalten. Beispielsweise zeigen Auswertungen der Vergleichsarbeiten in der
Grundschule (VERA) [17] nicht nur Rohwerte, wie die Anzahl richtig geloster
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Aufgaben, sondern ordnen die Ergebnisse auch in Kompetenzstufen ein und lassen
so Vergleiche mit Klassen oder Landeswerten zu. Um aus diesen Daten sinnvolle

Schliisse zu ziehen sind Kenntnisse in Datenanalyse unerlésslich.

Lehrkréfte, die verstehen, wie Daten generiert, ausgewertet und interpretiert
werden, kénnen daraus methodisch sinnvolle Konsequenzen ziehen, beispielswei-
se wo systematische Schwichen zu finden sind, welche Aufgabenformate beson-
ders guten Lernerfolg erzielen, welche Unterrichts- und Férdermafinahmen wirklich

sinnvoll sind und an welchen Stellen besser differenziert werden muss.

Dariiberhinaus kénnen Lehrkréfte, die Wissen iiber die Mathematik hinter Sta-
tistik, Datenanalyse und KI-Modellen haben, diese im Unterricht besser einordnen.
In vielen Lebenssituationen werden schon Kinder damit konfrontiert, Entscheidun-
gen auf der Basis davon zu treffen, ob etwas wahrscheinlich oder unwahrscheinlich
ist. Dies geschieht bereits in der Grundschule bei vielen Gesellschaftsspielen. Wenn
Lehrkréafte Wahrscheinlichkeiten verstehen, konnen die ein Grundversténdnis kind-
gerecht vermitteln und beim Denken und Entscheiden fundiert unterstiitzen. Sie
kénnen die Schiiler:innen besser auf den Umgang mit modernen digitalen Techno-
logien vorbereiten und ihnen beibringen, selbst erhobene oder vorliegende Statisti-
ken zu hinterfragen, sie kritisch zu interpretieren und Daten sinnvoll darzustellen.
Schon in der Grundschule kann durch einfache Formen der Datenerhebung und
-auswertung ein erstes Bewusstsein dafiir geschaffen werden, wie Daten Informa-
tionen liefern und Entscheidungen beeinflussen. So kénnen Lehrkréfte das kritische

Reflektieren und einen verantwortungsvollen Umgang mit Informationen férdern.

Besonders wichtig ist aber das Verstédndis fiir Kiinstliche Intelligenz, die unse-
ren Alltag immer mehr beeinflusst. Nur wenn Lehrer:innen verstehen, wie digitale
Systeme und Kl-basierte Modelle funktionieren, konnen sie Kindern vermitteln,
dass Informationen aus KI-System nicht objektiv und fehlerfrei sind. Kinder soll-
ten lernen, die Ausgaben aus KI-Systemen kritisch zu hinterfragen, die Ergebnisse
kritisch zu reflektieren und vor allem KI-Modelle verantwortungsvoll zu nutzen —

sie miissen dahingehend Medienkompetenz erlernen.

So tragt das Wissen, welches eine Lehrkraft im Bereich Datenanalyse und digi-
taler Technologien mitbringt, letztendlich dazu bei, Schiiler:innen auf eine Zukunft
vorzubereiten, in der ein kompetenter und reflektierter Umgang mit Daten und di-

gitalen Technologien eine grundlegende Kompetenz ist. Kompetenz in Datenanaly-
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se und kiinstlicher Intellizgenz hilft Lehrkréiften dabei, Kinder gut auf die heutige
Welt vorzubereiten. Sie unterstiitzt nicht nrt den Unterricht, sondern fordert auch

das kritische Denken und einen bewussten Umgang mit Daten.

1.2 Uberblick iiber die Vorlesung

Diese Vorlesung hat das Ziel, die Mathematik hinter KI-Modellen zur Datenana-
lyse verstdandlich zu machen. Damit fokussiert sie sich auf den zweiten Teil des
vorherigen Abschnitts. Insbesondere sind konkrete Apps oder Plattformen zur Da-
tenauswertung im Unterricht nicht teil dieser Vorlesung. Die Vorlesung konzen-
triert sich auf die mathematischen Grundlagen in Wahrscheinlichkeitstheorie und
linearer Algebra, sowie die mathematische Formulierung von KI-Systemen. Damit
soll die Vorlesung dazu beitragen, Lehrer:innen die grundlegende Funktionsweise
moderner KI-Systeme verstédndlich zu machen, so dass sie diese Kompetenz wie

zuvor beschrieben in den Unterricht mitnehmen konnen.

Es wird keine hohere Mathematik als Vorwissen vorausgesetzt. Die mathema-
tischen und statistischen Grundlagen werden im ersten Kapitel diskutiert. Die
weiteren Kapitel behandeln die Grundlagen der kiinstlichen Intelligenz, insbeson-
dere kiinstliche neuronale Netze, und das sogenannte Large Language Model, auf
dem z.B. ChatGPT oder Gemini basieren.

1.2.1 Jupyter Notebooks

Dieses Skript enthilt verschiedene Ubungsaufgaben. Einige davon sind Program-
mieraufgaben. Dazu werden beispielhaft 6 Jupyter Notebooks [5] bereit gestellt. Die
Notebooks sind in der Programmiersprache Julia [8] geschrieben und behandeln

die folgenden Themen:

(1) Julia Basics. (4) Neuronale Netze zur Klassifikation.
(2) Matrizen und Bilder. (5) Einfache Sprachmodelle.
(3) Modelle im maschinellen Lernen. (6) Large Language Models.

Das Highlight in dieser Liste ist das letzte Notebook iiber Large Language Models

(LLMs). Hier wird ein LLM von Grund auf implementiert und trainiert, so dass

jeder Baustein eines LLMs nachvollzogen werden kann.
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Es werden keine tiefen Programmier- oder Julia-Kenntnisse benétigt um die

Notebooks ausfiithren. Hier ist eine Anleitung zur Installation:

(1)

(2)

Folgen Sie der Anleitung auf der Seite https://julialang.org/downloads/, um

Julia auf Ihrem System zu installieren.

Installieren Sie danach das Paket IJulia in der Julia-Konsole mit dem Be-
fehl:

using Pkg

Pkg.add(“IJulia")

Ein neues Notebook starten Sie in der Julia-Konsole mit dem Befehl:
using IJulia

notebook ()

Im Anschluss 6ffnet sich ein Browser-Fenster, welches die Dateien auf Ihrem

System zeigt. Navigieren Sie zum ersten Notebook und 6ffnen es mit einem
Doppelklick.

Fiihren Sie die Jupyter Notebooks Zeile fiir Zeile aus. Versuchen Sie nachzu-

vollziehen, was in den einzelnen Zeilen passiert.


https://julialang.org/downloads/

2 Mathematische Grundlagen

Dieses Kapitel fiihrt in die mathematischen Grundlagen ein, die wir spéter brau-
chen werden, um die Methoden der kiinstlichen Intellizenz (KI) und des maschinel-
len Lernens (ML) zu beschreiben und zu verstehen. Fiir mehr Details wird auf [16]
(fiir den wahrscheinlichkeitstheoretischen Teil) und [15] (fiir lineare Algebra) ver-

wiesen.

2.1 Deskriptive Statistik

Das Ziel der deskriptiven Statistik ist es, Datenmengen zu beschreiben; dies ge-
schieht hauptséchlich durch die Berechnung von Kennzahlen und die graphische
Veranschaulichung. Diese Kennzahlen helfen uns, Muster und wesentliche Eigen-

schaften in den Daten zu erkennen.

Mathematisch lésst sich dies wie folgt modellieren: Gegeben ist eine Menge von
Daten
D=A{ey,...,en} CQ,

wobei ) eine Grundmenge darstellt. Die Elemente e; fiir 1 < ¢ < N sind die
einzelnen Datenpunkte. Wir haben also insgesamt N Daten in D. Das Ziel ist es

nun, Informationen aus D zu gewinnen und zusammenzufassen.

Definition 2.1.1 (Grundbegriffe). Q heifit statistische Grundgesamtheit oder
Menge aller moglichen Ereignisse. D heifit Stichprobe oder Datensatz.

Beispiel 2.1.1.

(1) Wir werfen einen Wiirfel N = 7 mal. Dann ist D = {Wurf 1,..., Wurf 7}
die konkrete Sammlung unserer Beobachtungen. €2 ist die Menge aller theore-

tisch moglichen Wiirfe, inklusive aller Begleitumsténde (Zeitpunkt, wer wirft,
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Temperatur etc.). Diese Unterscheidung ist wichtig, da {2 alle potenziellen
Informationen enthélt, wihrend D nur die tatsdchlich beobachteten Daten

reprasentiert.

(2) Wir beobachten die Haarfarben unserer Kommiliton:innen. Das Ergebnis
konnte sein: D = {blond, rot, schwarz}. €2 ist dann die Menge aller moglichen

Haarfarben, die grundsatzlich auftreten konnen.

Dieses Beispiel verdeutlicht, dass Daten nicht zwangslaufig durch Zahlen ausge-
driickt werden miissen. Sie konnen auch kategorisch sein. Es kann auch verschie-
dene Moglichkeiten geben, die Grundmenge €2 zu definieren, je nachdem, welche
Aspekte der Daten wir berticksichtigen mochten. Beispielsweise konnten wir €2 im
zweiten Beispiel auf die Menge der Haarfarben aller Studierenden an der Univer-
sitdt erweitern. Dies wiirde die Analyse beeinflussen, da wir dann eine kleinere

Grundgesamtheit betrachten.

2.1.1 Merkmale

Um Daten besser zu verstehen zu kénnen, betrachten wir verschiedene Merkmale.

Mathematisch modellieren wir diese wie folgt:

Definition 2.1.2 (Merkmal). Seien © und W Mengen und X : Q — W eine
Funktion. Diese Funktion ordnet jedem Element aus der Grundmenge () einen
Wert aus der Menge W zu. Wir nennen X Merkmal (oder Messwert) und W
Wertebereich. Ist D = {ey,...,ex} C Q ein Datensatz, so nennen wir z; = X (e;)

Beobachtung.

Die Funktion X ist entscheidend, da sie bestimmt, welche Information aus den

Daten extrahiert wird.

Beispiel 2.1.2. Q ist die Menge aller Miinzwiirfe und D = {Wurf 1,..., Wurf N}.
Sei weiterhin W = {Kopf, Zahl}. Dann ordnet die Funktion X :  — W einem
Wurt Kopf oder Zahl zu. Dies ist ein einfaches Beispiel fiir ein Merkmal, das uns
sagt, wie ein einzelner Datenpunkt (in diesem Fall ein einzelner Wurf) kategorisiert

wird.
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Beispiel 2.1.3. Der FashionMNIST [28] Datensatz enthélt Bilder verschiedener
Kleidungsstiicke. Wir betrachten hier 8 Beispielbilder.

Wir bezeichnen das erste Bild als e, das zweite als e5 usw. Dann ist der Datensatz
D= {61,...,68}.

Das Merkmal, das uns interessiert, ist die Art des Kleidungsstiicks, das auf dem

Bild zu sehen ist. Beispielsweise ist
X (e1) = Sandale, X (eq) = Jacke.

Das Ziel im Abschnitt iiber maschinelles Lernen wird es sein, eine Funktion X zu
lernen, die jedem Bild das korrekte Kleidungsstiick zuordnet. Interessanterweise
konnen Menschen diese Zuordnung oft automatisch und miihelos vornehmen — das

ist ein Beispiel fiir Intelligenz, die wir mit maschinellem Lernen nachbilden wollen.

Warum ist die Unterscheidung zwischen D und W wichtig? Wozu brauchen

wir D iiberhaupt? Reicht es nicht, nur mit Merkmalen zu arbeiten?

Wir benétigen die Unterscheidung zwischen D und W, um verschiedene Daten-
punkte auch dann unterscheiden zu konnen, wenn sie denselben Wert im Werte-
bereich W haben. Betrachten wir erneut den Miinzwurf: Wir méchten den ersten
Wurf vom zweiten unterscheiden, auch wenn beide Kopf zeigen. Im Wertebereich
W sind beide Wiirfe identisch, da sie beide ”Kopt” sind. Um die Reihenfolge und
die Individualitdt der Wiirfe zu beriicksichtigen, benttigen wir den Datensatz D.
Ahnliches gilt fiir die Bilder im FashionMNIST-Datensatz: Wenn wir nur W be-
trachten, verlieren wir die Information, dass es sich um unterschiedliche Bilder
handelt, die durch 28 x 28 Pixel Grauwerte dargestellt werden.

Die Rolle von W ist es also, die fiir uns relevanten Informationen zu extrahieren

und darzustellen, wiahrend D die vollstéandigen Daten, wie sie vorliegen, enthélt.

Wir fassen verschiedene Arten von Merkmalen zusammen:
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Definition 2.1.3 (Merkmaltypen).

(1) Ein X ist ein quantitatives Merkmal, wenn W C R. Das bedeutet, dass
die Beobachtungen z; = X(e;) durch messbare Groen definiert sind. Wir

unterscheiden zwei Fille:
o diskret:
W besteht aus isolierten Punkten (z.B. Alter in Jahren: W = N).
e stelig:
W ist kontinuierlich (z.B. Temperatur in °C: W = (=273, 00)).
(2) Ein X ist ein nominales Merkmal, wenn W eine endliche Menge von Bezeich-

nungen (Wortern oder Buchstabenfolgen) ist (z.B. W = Menge der moglichen
Wohnorte).

(3) Ein X ist ein ordinales Merkmal, wenn es nominal ist und es zusétzlich
eine natiirliche Ordnung auf W gibt (z.B. W = {grof}, mittel, klein} mit der
Ordnung klein < mittel < grof}).

Definition 2.1.4. Sei X = (X7,..., X}) eine Liste (ein Vektor) von Merkmalen.

Dann nennen wir X ein multivariates Merkmal.

Beispiel 2.1.4. X = (X;, X3), wobei X; = Name einer Stadt (nominales Merk-

mal) und Xy = Anzahl Einwohner (quantitativ diskret) sind.

2.1.2 Grafische Darstellung von Haufigkeitsverteilungen

Da wir nun die Begrifflichkeiten gekléart haben, wollen wir nun Methoden zur Be-
schreibung von Datensétzen verstehen. In diesem Abschnitt behandeln wir grafi-
sche Darstellungen, um Daten zu visualisieren, was uns dabei hilft Muster, Aus-

reiffer und die zugrundeliegende Struktur der Daten zu erkennen.

Sei dazu () eine statistische Grundgesamtheit; X : @ — W ein Merkmal mit
Wertebereich W und D = {ey,...,ey} ein Datensatz der Grole N. Wir treffen

folgende Annahmen.
e X ist entweder nominal, ordinal oder quantitativ diskret.

e W ist endlich, wobei M := #W die Anzahl der moglichen Ausprigungen
des Merkmals beschreibt.
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AuBerdem nehmen wir an, dass
W ={wy,...,wm}

nummeriert ist. Diese Nummerierung ist wichtig, um die Auspragungen des Merk-
mals quantitativ zu behandeln, auch wenn sie urspriinglich keine numerische Be-

deutung haben.

Als erstes definieren wir die sogenannte empirische Haufigkeitsverteilung der Da-
ten D. Diese Verteilung gibt uns einen Uberblick dariiber, wie oft jede Auspragung

des Merkmals im Datensatz vorkommt.

Definition 2.1.5 (H#ufigkeitsverteilung). Die Zahl
Ny =#{i |1 <i <N, X(e;) = w;} = #X " (wy)

ist die absolute Haufigkeit des Merkmals w;. Die relative Haufigkeit von w; ist

N

e _J
fj‘ N

Weiterhin ist (Ny, ..., Nys) die absolute Haufigkeitsverteilung des Merkmals X der
Daten D und (fi,..., far) ist die relative Haufigkeitsverteilung.

Es gilt immer:
M
(1> Zj:l Nj =N
M M N M
(2) Zj:l fi= Zj:l N = % Zj=1 Nj = % =1
Die zweite Eigenschaft stellt sicher, dass die Summe der relativen Haufigkeiten
immer 1 ergibt, was sie zu einer Wahrscheinlichkeitsverteilung macht (siehe Defi-
nition 2.3.1). Wahrscheinlichkeitsverteilungen sind ein grundlegendes Konzept im

maschinellen Lernen. Sie spielen im Kapitel zu Large Language Models (Kapitel 4)

eine zentrale Rolle.

Beispiel 2.1.5. W = {a,b,c} (nominales Merkmal mit M = 3 Auspridgungen)
und D = {ey,...,e5} (N =5 Datenpunkte). Weiterhin sei

X(e1) =a, X(ex) =0, X(e3) =a, X(es) =a, X(e;) =a.
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Sei etwa wy; = a,wy = b, w3 = c¢. Dann gilt:
(N17N27N3) = (47 170)7 (f17f27f3) - (0870270)

(4-mal a, 1-mal b und 0-mal ¢, bzw. 80% der Daten sind a, 20% sind b und 0%

sind ¢).

Definition 2.1.6 (Balkendiagramm). Ein Balkendiagramm stellt die Verteilung
eines nominalen, ordinalen oder quantitativ diskreten Merkmals dar. Auf der z-
Achse werden die Werte aus W aufgetragen. Uber w; € W wird ein Balken der
Lange N; (oder f;) gezeichnet.

Hier ist ein simples Beispiel.

Beispiel 2.1.6. W = {a,b,c}, (N1, Na, N3) = (3,2,4), a = wy,b = wy, ¢ = w3

absolute Héufigkeit /V; relative Héufigkeit f;
5 0.5
4 0.4
3 0.3
2 0.2
1 0.1
“Ta b c W “Ta b c W

Fiir quantitativ kontinuierliche Daten benutzen wir ein Histogramm. Die Idee
ist es, einen kontinuierlichen Wertebereich W € R in Einzelstiicke zu zerlegen. Wir

sagen auch diskretisieren.

Definition 2.1.7 (Diskretisierung). Sei W C R ein kontinuierlicher Wertebereich.

Seien weiterhin I; = [vj,vj41), 1 < j <k, halboffene Intervalle, sodass
k

(2) v; <wjyq fiiralle 1 <j <k—1(dh. jeder Punkt in W liegt in genau einem
Intervall [;).

Dann nennen wir (Iy,..., I) eine Diskretisierung von W.

Eine sinnvolle Diskretisierung ist entscheidend fiir die Interpretation des Histo-
gramms. Die Wahl der Intervalle (Bin-Breite) kann die Visualisierung erheblich

beeinflussen.

10
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Definition 2.1.8 (Haufigkeitsverteilung quantitativ stetiger Merkmale). Gegeben
sei ein Merkmal X : Q@ — W und ein Datensatz D = {ey,...,en} C €. Sei

I =(I,...,I) eine Diskretisierung von W. Wir definieren (wie zuvor)

(1) (Ny,...,Ny) ist die absolute Héufigkeitsverteilung von X bzgl. der Diskreti-

sierung.

(2) (f1,..., fr) ist die relative Haufigkeitsverteilung.

Definition 2.1.9. Ein Histogramm stellt die Haufigkeitsverteilung eines quantita-
tiv stetigen Merkmals als Balkendiagramm nach Transformation in ein quantitativ
diskretes Merkmal dar.

Beispiel 2.1.7. W = [0,5), [ = (I3, I3, I3) mit
]1 - [0, ].), ]2 - [1,3), 13 - [3,5)

Angenommen (N, Na, N3) = (3,2,4) ist die zu dieser Diskretisierung gehérende

Verteilung. Dann ist das Histogramm wie folgt.

absolute Haufigkeit N; relative Haufigkeit f;

0.5
0.4
0.3
0.2
0.1
012345 012345
Die gestrichelten Linien geben hierbei die Grenzen der einzelnen Intervalle in der

‘b—ll\DOOH;Cﬂ

w

Diskretisierung an (normalerweise werden diese in einem Histogramm aber nicht

angezeigt).

Eine weitere Moglichkeit die Haufigkeitsverteilung eines quantitativen Merkmals
zu beschreiben ist die empirische Verteilungsfunktion. Die empirische Verteilungs-
funktion gibt fiir jeden Wert x den Anteil der Beobachtungen an, die kleiner oder

gleich x sind.

11
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Definition 2.1.10. Sei X ein Merkmal mit Wertebereich W C R. Angenommen
wir haben Daten mit Beobachtungen z; = X(e1),...,zxy = X(ey). Die zugehérige

empirische Verteilungsfunktion ist:
1 . .
FN(I)ZN#{HlSZSNi%Sﬁ}-

Die empirische Verteilungsfunktion dient zur Schétzung der Verteilungsfunktion

der Grundgesamtheit.

Beispiel 2.1.8. N = 4,1’1 = O,ZL‘Q = 2,[E3 = 2,.174 =95

Fn(x)
1 -
0.75 1 I
0.5 1
0.25
R i 2 3 4 5 6 7 T

2.1.3 Ubungsaufgaben

Aufgabe 2.1.1. Wir beobachten ein multivariates Merkmal mit zwei Auspréagungen

Initialen und Note:

Initialen | AB CD GH NO TU
Note 1 4 2 4 3

(1) Um welche Art von Merkmalen handelt es sich hier?

(2) Berechnen Sie Rangwerte, Mittelwert und Median des Merkmals Note. Wie
dndern sich diese Werte wenn wir eine zusétzliche Beobachtung (ML, 4) ma-

chen?

12
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Aufgabe 2.1.2. Laden sie das Package DataFrames (es muss eventuell zuerst

installiert werden) in eine Julia Session:

using DataFrames

Definieren Sie in Julia zwei Vektoren Initialen und Note mit den Eintrdgen aus

der Tabelle aus Aufgabe 1. Definieren Sie dann ein DataFrame mit dem Befehl.

D = DataFrame(Initialen=Initialen, Note=Note)

Erkléren Sie die Ergebnisse folgender Zeilen:

D

D[1:2, :]
D[:, 1:2]
size (D)

sort (D, [:Notel)
D[D.Note .> 2, :]

Aufgabe 2.1.3. Gegeben seien die drei Merkmale in der folgenden Tabelle.

Alter Fernsehzeit in h/Woche besitzt ein Smartphone

6 5) nein
8 10 ja
7 3 nein
10 15 ja
6 8 ja
7 9 nein
7 13 ja
9 8 ja

(1) Beurteilen Sie, um welche Art von Merkmalen es sich jeweils handelt.
(2) Speichern Sie die Daten in einem DataFrame.

(3) Berechnen Sie ein DataFrame, welches nur die Daten von Kindern enthélt,

die ein Smartphone besitzen.

(4) Berechnen Sie ein DataFrame, welches nur die Daten von Kindern enthilt,
die élter als 8 sind.

13
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Aufgabe 2.1.4. Diese Aufgabe soll mit der grundlegenden Syntax von Julia
vertraut machen.
(1) Definieren Sie in Julia folgende Vektoren:

x = [1, 2, 3, 4, 5, 6]
y collect (1:6)

Erkléren Sie die Ergebnisse der folgenden Zeilen:

x
x -y
x +y

X .k y

x.72 .+ 2

length (x)

n = length(x + y)

sum(x+y)/n

(2) Definieren Sie in Julia folgende Vektoren:

x = collect(0:2:10)
= collect(5:-1:1)
Z = ||a”, "bll’ "CII

Erkléren Sie die Ergebnisse der folgenden Zeilen:

y

x[1:3]

y[[1, 2, 4]1]
z [2]

[x; z]

x .> 2
x[x .> 2]
x[x .> 2 .&& x .<= 8]
yly .== 5 .|l y .< 2]

(3) Fiihren Sie folgenden Code aus. Was passiert?

for i in 1:10
println (i)

end
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2.2 Kennzahlen der deskriptiven Statistik

Im letzten Abschnitt haben wir Daten visuell beschrieben. Im Gegensatz dazu

wollen wir in diesem Abschnitt Daten durch Kennzahlen beschreiben.

Wir fokussieren uns auf quantitative Daten mit Wertebereich W C R. Die re-
levanten Informationen, die wir in diesen Abschnitt verstehen wollen sind (1) wo
sich die Daten befinden (zentrale Tendenz) und (2) wie weit verstreut die Daten
sind (Variabilitét).

Beispiel 2.2.1. Verteilung von Temperaturdaten. (1) Wo: Wenn die Daten alle
bei um die 20°C liegen, dann handelt es sich um einen warmen Ort. (2) Wie
weit: In Osnabriick liegt die Temperatur das Jahr iiber ca. zwischen —10°C und
+30°C. Temperaturdaten sind hier iiber das Intervall [—10, 30] verstreut. Auf den
kanarischen Inseln hingegen ist das ganze Jahr iiber eine Temperatur von ca. 25°C.

Hier sind die Temperaturdaten weniger verstreut.

Fiir die relevanten Definitionen ordnen wir die Daten zunéchst. Die Sortierung
der Daten ist oft ein erster Schritt in der Datenanalyse. Wir zuvor bezeichnen wir
mit z; = X (e;) das Merkmal des Datenpunktes e; € D.

Definition 2.2.1 (Rangwerte). Seien z1,...,zx € R Beobachtungen eines quan-
titativen Merkmals. Wir nummerieren um, so dass r(1) < z2) < z(3) < ... < 2.

Wir nennen z;) den i-ten Rangwert, x(;) das Minimum und zy) das Maximum.

Beispiel 2.2.2. Gegeben sind Daten xy = 3,29 = 6,23 = 1,24 = 1,25 = 4. Die

Rangwerte sind dann: z(1) = 1,22) = 1,23y = 3, 4y = 4, 2(5) = 6.

2.2.1 Lageparameter

Lageparameter beantworten die Frage ”Wo liegen die Daten?”. Sie geben uns ein

Ma$ fiir die zentrale Tendenz der Daten.

Die erste Art von Lageparametern sind die sogenannten Quantile. Quantile teilen

die Daten in gleich grofie Teile und geben uns Informationen iiber die Verteilung.
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Definition 2.2.2 (Quantile). Seien xy,...,xy € R Beobachtungen. Sei 0 < p < 1.
Das p-Quantil der Daten ist definiert als

~ T (k) falls pN € N und pN < k < pN + 1
%(a:(k) +2a41)), fallspN =FkeN.

Die Idee dieser Definition ist wie folgt: Fiir 0 < p < 1 ist das p-Quantil Z,, ein
Punkt, so dass p - 100% der Daten kleiner als 7, sind:

ra) < oS wp S Tp < xagn) < ..o < x(y),  sodass k& pN.

Quantile werden beispielsweise in der Datenvorverarbeitung verwendet, um Aus-

reifler zu identifizieren und zu behandeln.
Definition 2.2.3 (Median). Das i-Quantil Z;/, heifit Median.
Nach Definition liegen 50% der Daten iiber dem Median und 50% darunter.

Beispiel 2.2.3. Gegeben seien Daten x1 = 1,25 = 1,23 = 4,24 = 6. Die Rang-
werte sind dann z(;) = 1 <z = 1 < 23y = 4 < 24y = 6 Dann ist der Median

dieser Daten T/, = 2.5.

Jetzt haben zusétzlich x5y = 10. Dann wird der Median zu /, = x(3) = 4.

Definition 2.2.4 (Quartile). Das 1-Quantil heifit unteres Quartil. Das 3-Quantil
heifit oberes Quartil.

Der Median misst das ”Zentrum” der Daten. Eine alternative Definition fiir eine
Art Zentrum ist der Mittelwert. Der Mittelwert ist der intuitivste Lageparameter,

aber er kann im Gegensatz zum Median eher durch Ausreifler beeinflusst werden.

Definition 2.2.5 (Mittelwert). Seien z1,...,zy € R Beobachtungen. Der Mittel-

wert der Daten ist definiert als

Kl

1
= N($1+x2+...—|—mN).

16
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Beispiel 2.2.4. Gegeben seien die Daten x1 = 3,29 = 10,23 = 1,24 = 4,25 = 5.
Dann ist N = 5. Median und Mittelwert sind dann

1 23
Ty2 =3, i=5(3+10—|—1+4—|—5):E:4.6.

Der Median ist ein robuster Lageparameter, der weniger anfillig fiir Ausrei-
Ber ist als der Mittelwert. Das folgende Beispiel illustriert, wie Extremwerte den

Mittelwert beeinflussen, wihrend der Median demgegeniiber robuster ist.

Beispiel 2.2.5. Angenommen wir haben einen Datensatz, den wir in einem Hi-

stogramm wie folgt darstellen.

2000
1900
1800
1700
1600
1500
1400
1300
1200
1100
1000
900
800
700
600
500
400
300
200

100
o . il

n n n n n
0 1000 2000 3000 4000 5000

Dann ist der Median ungeféhr bei x = 0, weil der groite Teil der Daten sich um 0
zentriert. Andererseits ist der Mittelwert sicher groler als 0, da ein kleiner Teil der
Daten bei x = 5000 liegt. In diesem Fall wire der Median eine bessere Wahl als

Lageparameter.

2.2.2 Streuungsparameter

Streuungsparameter beantworten die Frage ”Wie weit sind die Daten verstreut?”.
Sie geben uns ein Maf fiir die Variabilitdat der Daten.

Im Folgenden seien wieder zi,...,zy € R Beobachtungen mit zugehorigen

Rangwerten z() < ... < z(y).

Definition 2.2.6 (Spannweite und Quartilsabstand). Wir nennen R = T(N) — T(1)

und @ = 73,4 — I1/4 die Spannweite und den Quartilsabstand der Daten.
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Definition 2.2.7 (Standardabweichung und Varianz). Die Standardabweichung

der Daten ist definiert als

1 7)2
s = mZ(xl—x)

i=1

Die Varianz der Daten, oder auch Stichprobenvarianz, ist definiert als

N

1
2 N2
s——N_lg(xl z).

i=1

D.h. Varianz und Standardabweichung messen die durchschnittliche quadrierte

Abweichung der Beobachtungen z; zum Mittelwert z.

Der Nenner N — 1 in dieser Definition ist kein Schreibfehler. Man normalisiert

mit ﬁ anstatt mit %, damit s ein sogenannter "unverzerrter Schétzer” wird.
Die Mathematik hinter dieser Aussage geht allerdings iiber den mathematischen

Inhalt dieser Vorlesung hinaus.

Beispiel 2.2.6. Angenommen wir haben zwei Datensétze, die wir in Histogram-

men wie folgt darstellen.

05 05

04 0.4 F

03 0.3

0.2 r 0.2

0.1 0.1

0.0 I I 1 0.0 4L
-10 0 10 20 30 -10 0 10 20 30

Da die Daten auf der rechten Seite weiter verstreut sind, ist die Varianz dieses
Datensatzes grofer als auf der linken Seite. Eine hohere Varianz kann beispielsweise

dazu fithren, dass ein Modell weniger genau ist.

Alle Kennzahlen koénnen in einem Bozplot zusammengefasst werden.
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| | | | |
T T T 1 T

L Ty T1/2 T3y T2

Hierbei ist 71 die kleinste Beobachtung, die gréBer als ;1,4 — (3/2)@Q ist, und 7, die
groBte Beobachtung, die kleiner als &5/, + (3/2)@Q ist (Erinnerung: Q) = Z3/4 — Z1/4
ist der Quartilsabstand). Wir nennen w; den unteren Whisker und ws den oberen
Whisker. Das Boxplot ist ein niitzliches Werkzeug, um Ausreiler zu identifizieren

und die Verteilung der Daten visuell zu {iberpriifen.

2.2.3 Ubungsaufgaben

Aufgabe 2.2.1. Wihrend einer Geschwindigkeits- und Verkehrskontrolle werden

in einer 70er Zone von 12 Autos die folgenden Daten aufgenommen.

Kennzeichen = Anzahl Personen im Auto Geschwindigkeit in km/h

0S 4 7545
0S 2 68.2
BI 1 65.3
GO 5 60.1
MS 1 80.9
BI 2 100.0
MS 3 87.0
0S 1 70.2
0S 2 72.5
HB 1 69.6
B 3 71.4
0S 5 87.1

Die folgenden Aufgaben kénnen Sie per Hand oder mit Hilfe von Julia losen
(siche auch Aufgabe 2.2.2).
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(1) Um welche Art von Merkmalen handelt es sich hier?

(2) Erstellen Sie absolute und relative Haufigkeitsverteilungen fiir jede oben auf-
gefiihrte Merkmal. Verwenden Sie bei der Merkmal Geschwindigkeit eine

Klassenbreite von 10.

(3) Erstellen Sie fiir die Haufigkeitstabellen aus Teil a) eine passende grafische
Darstellung.

(4) Berechnen Sie Mittelwert, den Median und die Standardabweichung fiir das
Merkmal Geschwindigkeit.

(5) Erstellen Sie die empirische Verteilungsfunktion fiir das Merkmal Anzahl Per-

sonen im Auto.

Aufgabe 2.2.2. Lesen Sie die Julia Dokumentationen fiir

(1) Histogramme:

https://docs. juliaplots.org/latest/series_types/histogram/
(2) Mittelwert:

https://docs. julialang.org/en/v1l/stdlib/Statistics/#Statistics.mean
(3) Median:

https://docs. julialang.org/en/v1l/stdlib/Statistics/#Statistics.median
(4) Standardabweichung:

https://docs. julialang.org/en/vl/stdlib/Statistics/#Statistics.std

Aufgabe 2.2.3. Diskutieren Sie die Antwort der Bundesregierung auf Frage 4.

der Kleinen Anfrage, welche unter
https://dip21.bundestag.de/dip21/btd/19/221/1922109.pdf

verfiighar ist. Warum fallt die Antwort so aus?
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Aufgabe 2.2.4. In einem Forschungsprojekt wurden zu zwei Zeitpunkten Mes-
sungen einer physikalischen Grofie an einer Materialprobe durchgefiihrt. Fiir jeden
Messzeitpunkt wurde ein Bild des Messbereichs aufgenommen und ein automati-
sches Erkennungs- bzw. Zahlsystem ermittelte, wie viele Defekte (z. B. Mikrorisse)
pro Bildausschnitt vorkamen.

Nach 9.000 Belastungszyklen wurden 54 Bildausschnitte ausgewertet, wobei die

gefundenen Defektzahlen wie folgt sortiert vorliegen:

317 405 528 529 567 604 611 614 624 626 633 642 674 677
691 704 708 714 724 730 750 786 790 790 800 801 805 809
828 836 840 841 850 869 872 876 877 878 883 894 898 928
940 941 942 946 948 949 976 1003 1004 1010 1024 1028

Nach 12.000 Belastungszyklen wurden erneut 5 Bildausschnitte analysiert; die

sortierten Defektzahlen lauten:

463 489 543 561 574 644 688 724 735 768 778 799 800 807
813 832 835 845 847 847 866 871 877 888 892 894 902 903
916 918 918 926 929 929 932 935 947 947 950 953 953 961
962 993 1002 1010 1012 1022 1033 1034 1036 1045 1063 1112

(1) Erstellen Sie in Julia ein DataFrame, welches die Daten enthilt.

(2) Erstellen Sie jeweils ein Histogramm fiir die Daten. Verwenden Sie als Klas-
senbreite 100 und arbeiten Sie auf dem Intervall (300, 1200].

(3) Berechnen Sie Mittelwert und Standardabweichung der beiden Datensitze.

Aufgabe 2.2.5. Installieren Sie das Paket RDatasets und laden Sie es in die

aktuelle Julia Session.
(1) Rufen Sie das airquality Dataset auf:

data = dataset("datasets", "airquality")

(2) Geben Sie das Objekt data im Terminal oder Jupyter-Notebook aus. Was

sehen Sie?

(3) Lesen Sie die Dokumentation des Datensatzes.
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(4) Erklédren Sie, was die folgenden Befehle bewirken.

names (data)
propertynames (data)
describe (data)

(5) Visualisieren Sie die Verteilung des Merkmals Wind.

(6) Berechnen Sie Mittelwert, Median, Standardabweichung sowie Quartile des
Merkmals Wind.

2.3 Theorie des Wahrscheinlichkeitsraums

Im ersten Abschnitt haben wir die statistische Grundgesamtheit 2 definiert. Der
Datensatz D war eine Teilmenge von 2. Es ist wichtig, sich daran zu erinnern, dass
die statistische Grundgesamtheit alle moglichen Datenpunkte umfasst, wéahrend

ein Datensatz lediglich eine Stichprobe aus dieser Grundgesamtheit darstellt.

In diesem Abschnitt wollen wir die Wahrscheinlichkeiten von Daten abstrakt de-
finieren. Dazu nennen wir §2 den Ereignisraum. Diese Formalisierung erlaubt uns,
iiber Wahrscheinlichkeiten unabhéngig von spezifischen Experimenten oder kon-
kreten Datensétzen zu sprechen. Man stelle sich den Ereignisraum als die Menge
aller denkbaren Ergebnisse vor. Teilmengen A C 2 nennen wir Ereignisse. Ein Er-
eignis repréasentiert also eine bestimmte Teilmenge der moglichen Ergebnisse. Ein
Beispiel ist der Wiirfelwurf, bei dem 2 alle sechs moglichen Augenzahlen umfasst;

ein Ereignis kdnnte dann das Wiirfeln einer geraden Zahl sein.

Definition 2.3.1 (Wahrscheinlichkeitsraum). Sei € ein Ereignisraum und A eine

Menge von Ereignissen. Ein Wahrscheinlichkeitsmaf} ist eine Abbildung
P:A—[0,1, A~ P(A).

mit folgenden Eigenschaften:
(1) P() =0 und P(Q) = 1.
(2) P(UZ, Ai) =502, P(A), falls A;, A,, ... paarweise disjunkt.
P(A) heifit dann die Wahrscheinlichkeit von A € A. Das Tripel (€2, A, P) heifit

Wahrscheinlichkeitsraum.

22



2 Mathematische Grundlagen

(Bemerkung: Nicht jede Menge A von Ereignissen kann in der Definition gewéhlt

werden. A muss ein sogenannte o-Algebra sein.)

Diese Definition kann zunéchst abstrakt wirken, ist aber das Fundament der
Wahrscheinlichkeitstheorie und somit auch des maschinellen Lernens. €2 definiert,
was iiberhaupt passieren kann, A legt fest, welche Ereignisse wir iiberhaupt messen
kénnen, und P quantifiziert, wie wahrscheinlich ein bestimmtes Ereignis A € A ist.
Die beiden Eigenschaften des Wahrscheinlichkeitsmafles gewéhrleisten eine konsi-
stente und logische Berechnung von Wahrscheinlichkeiten. Die erste Figenschaft
besagt, dass kein Ergebnis die Wahrscheinlichkeit 0 besitzt und das alle Ereignisse
zusammen die Wahrscheinlichkeit von 1 hat. Die zweite Eigenschaft, die Addi-
tivitét, erlaubt uns, die Wahrscheinlichkeit komplexer Ereignisse aus den Wahr-

scheinlichkeiten einfacher, disjunkter Ereignisse zu berechnen.

Das néchste Beispiel ist sehr einfach, aber es veranschaulicht deutlich das Kon-

zept eines Wahrscheinlichkeitsraums.

Beispiel 2.3.1. Sei 2 = Menge aller Miinzwiirfe und X :  — {Kopf, Zahl}.
Wir betrachten das Ereignis A = {w € Q | X(w) = Kopf}. Dann ist P(A) die
Wahrscheinlichkeit Kopf zu werfen.

Im Kontext des maschinellen Lernens verwenden wir Wahrscheinlichkeitsrdume,
um Unsicherheit in Daten und Modellen zu modellieren. Wahrscheinlichkeitsrdume
bilden auch die Grundlage fiir generative Modelle wie Large Language Models
(LLM), die die Verteilung der Trainingsdaten erlernen, um neue Daten zu ge-

nerieren.

Wir geben nun noch dre Beispiele spezifischer Wahrscheinlichkeitsrdaume

Beispiel 2.3.2 (Endlicher/diskreter Wahrscheinlichkeitsraum). Sei (€2, A, P) ein
Wahrscheinlichkeitsraum. Falls Q endlich/diskret ist, nennen wir (2, A, P) endli-

chen/diskreten Wahrscheinlichkeitsraum.

Beispiel 2.3.3 (Gleichverteilung). Sei €2 endlich. Dann heifit das Wahrscheinlich-
keitsmafl P(A) = % fir A C Q. (#A = Anzahl Elemente in A) das Mafl der
Gleichverteilung auf 2. Insbesondere gilt fiir alle w € Q: P({w}) = ﬁ
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Beispiel 2.3.4 (Das Urnenmodell). Die Theorie der Wahrscheinlichkeitsraume
kann auf viele verschiedene Arten veranschaulicht werden. Ein klassisches Beispiel

ist das Urnenmodell.

In einer Urne befinden sich n Kugeln. Das Zufallsexperiment im Urnenmodell
besteht darin, zuféllig £ Kugeln aus der Urne zu ziehen. Dabei nehmen wir an, dass
jede Kugel die gleiche Wahrscheinlichkeit hat, gezogen zu werden. Dieses Modell
ist ein grundlegendes Werkzeug in der Wahrscheinlichkeitstheorie und dient als
anschauliches Beispiel. Es findet auch Anwendung in verschiedenen Bereichen des
maschinellen Lernens, beispielsweise bei der Bewertung von Stichprobenverfahren
und der Analyse von Algorithmen, die auf zufélliger Auswahl basieren.

Wenn k = 1 Kugel gezogen wird, dann gilt P("Kugel ¢ wird gezogen”) = =.
Diese einfache Wahrscheinlichkeit ergibt sich direkt aus der Annahme, dass je-
de Kugel gleich wahrscheinlich gezogen wird. Was passiert aber, wenn wir £ > 1
Kugeln ziehen? Hier ergeben sich verschiedene Moglichkeiten, die auf unterschied-

lichen Annahmen {iber das Zufallsexperiment basieren.

Zwei grundlegende Fragen stellen sich dabei: Ziehen wir die Kugeln mit oder
ohne Zuriicklegen? Und ist die Reihenfolge der gezogenen Kugeln von Bedeutung
oder nicht? Diese Fragen fiihren zu vier verschiedenen Ereignisrdumen, die wir im
Folgenden néher betrachten werden. Die Unterscheidung zwischen diesen Féllen ist

wichtig, da sie sich direkt auf die Berechnung der Wahrscheinlichkeiten auswirkt.

Wir benennen die entsprechenden Ereignisrdume wie folgt:

‘ mit Reihenfolge ‘ ohne Reihenfolge

mit Zuriicklegen

ohne Zuriicklegen Qozmr QozkoR

QmZ,mR QmZ,oR

Um die Gleichverteilung auf diesen Ereignisrdumen zu berechnen, geniigt es, die
Anzahl der Elemente in den jeweiligen Rdumen zu bestimmen, da alle Ergebnisse

gleich wahrscheinlich sind.

Mit Zuriicklegen, mit Beachtung der Reihenfolge Hier zichen wir £ Kugeln aus
der Urne, wobei wir nach jedem Zug die Kugel wieder zuriicklegen. Das bedeutet,

dass bei jedem Zug alle n Kugeln zur Auswahl stehen. Der Ereignisraum kann wie
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folgt modelliert werden.
Qnzmr ={w = (w1, ...,w) | 1 <w; < n fiir alle i}.

Da bei jedem Zug alle n Kugeln gezogen werden konnen, gilt

#sz’mR:n-n---n:nk.

Z.B. ist 6%1 = %96 ~ 0.0008 die Wahrscheinlichkeit, 4 Sechsen hintereinander zu
werfen. Dies verdeutlicht, dass die Wahrscheinlichkeit, 4 Sechsen hintereinander

zu werfen, ziemlich klein ist.

Ohne Zuriicklegen, mit Beachtung der Reihenfolge In diesem Modell konnen
wir, wenn wir eine bestimmte Kugel gezogen haben, sie im néchsten Zug nicht

mehr ziehen. Ein Modell fiir den Ereignisraum ist also
Qozmr ={w = (wy,...,w) | 1 <w; <nfiir alle i und w; # w; fur ¢ # j}.

Fiir die Wahl von w; gibt es n Moglichkeiten, fiir die Wahl von wy gibt es n — 1

Méoglichkeiten (da wq # wy) usw. Insgesamt erhalten wir:

#Qozmr=n-(n—1)-(n—2)---(n—k+1)=

(n—k)!

Z.B. berechnet sich die Anzahl aller moglicher Bundesligatabellen durch 18 aus

18 Vereinen ohne Zuriicklegen zu ziehen, also (lglfsis)! = 6.402.373.705.728.000.

Ohne Zuriicklegen, ohne Beachtung der Reihenfolge Ohne Beachtung der
Reihenfolge heifit, dass z.B. w; = (1,2) und wy = (2, 1) als gleich betrachtet wer-
den sollen. Ein mathematisches Konstrukt, in dem die Reihenfolge irrelevant ist,
ist die Menge (im Beispiel also {1,2}). Wir erhalten folgendes Modell fiir den

Ereignisraum.
Qozor = {w={wy,...,we} | 1 <w; <n fir alle i}.

Wir zdhlen als Néchstes die Elemente in dieser Menge.
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Wir zihlen die Anzahl der Moglichkeiten wy, ..., w, zu ordnen (n!) und teilen
diese Anzahl dann durch die Anzahl Moglichkeiten die ersten k zu ordnen (k!) und

die letzten n — k zu ordnen ((n — k)!). Insgesamt:

n! n
Q = = .
#lozor (n— k) k! (k)

Anders gesagt: (Z) ist die Anzahl der k-elementigen Teilmengen in einer Menge

mit n Elementen.

7.B. ist die Wahrscheinlichkeit das richtige Los bei “Lottot 6 aus 49” zu ziehen
gleich () = 13.983.816.

Mit Zuriicklegen, ohne Beachtung der Reihenfolge In diesem Modell kénnen
wir Kugeln mehrfach ziehen (da mit Zuriicklegen), aber die Reihenfolge soll nicht

beachtet werden. Wir haben folgendes Modell fiir den Ereignisraum.
Qnzor = {w = (wy,...,w) | 1 <w; <nfiralle i und wy + - - + w, = k}.

Dabei misst w; wie oft wir Kugel ¢ gezogen haben.

Um die Anzahl der Elemente in €2,,,z ,r zu zdhlen, kénnen wir jedem w € Q,,z,r
genau ein Diagramm zuordnen. fiir w = (wy, ..., wy) erstellen wir ein Diagramm

der Form

...... "‘7

wobei im i-ten Abschnitt genau w; Punkte zu sehen sein sollen. Z.B. ist das Dia-
gramm, das wir w = (2,4,1) zuordnen, wie folgt: - - | - - - -|-. Die Anzahl der
Elemente in €,z ,r ist also die Anzahl solcher Diagramme. Jedes Diagramm be-
steht aus n + k — 1 Symbolen (k Punkte, und n — 1 Striche). D.h. die Anzahl der
Diagramm ist gleich der Anzahl Moglichkeiten aus n+k—1 Symbolen n—1 Striche
zu ziehen. Dies ist gleich der Anzahl der (n — 1)-elementigen Teilmengen in einer
n + k — 1 elementigen Menge. Daher:

n—1

n+k—1
#QmZpR:( )
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2.3.1 Frequentistischer vs. Bayes’scher
Wahrscheinlichkeitsbegriff

Es gibt nun zwei grundlegend unterschiedliche Perspektiven darauf, wie die Defini-
tion eines Wahrscheinlichkeitsraumes die Verteilung reeller Daten modelliert. Diese
beiden Perspektiven priagen unser Verstédndnis von Wahrscheinlichkeit und haben
weitreichende Konsequenzen fiir die Art und Weise, wie wir statistische Schliisse

ziehen und Modelle erstellen.

e Sei f, die relative Haufigkeit des Ereignisses A in n unabhéngigen Zufalls-
experimenten. Dann ist P(A) = lim,,_, [, vorausgesetzt dieser Grenzwert
existiert. Das bedeutet, dass die Wahrscheinlichkeit eines Ereignisses defi-
niert wird als der Wert, den die relative Haufigkeit des Ereignisses annimmt,
wenn das Experiment unendlich oft wiederholt wird. Diese Perspektive wird
als frequentistischer Wahrscheinlichkeitsbegriff bezeichnet. Ein zentrales Ele-
ment ist hier die Annahme, dass es eine ”wahre” Wahrscheinlichkeit gibt, die
durch die langfristige Wiederholung des Experiments approximiert werden

kann.

e Der Bayes’sche Wahrscheinlichkeitsbegriff definiert P(A) als Erfahrungs-
wert, nicht als Grenzwert einer Héaufigkeit. Insbesondere ist es mit dem
Bayes’schen Wahrscheinlichkeitsbegriff moglich, unvollstédndige Information

iiber deterministische Prozesse auf Wahrscheinlichkeitsraum zu modellieren.

Der frequentistische und der Bayes’sche Wahrscheinlichkeitsbegriff stellen also zwei
unterschiedliche Denkweisen dar, wie wir mit Unsicherheit umgehen. Der frequen-
tistische Ansatz versteht Wahrscheinlichkeit als die langfristige relative Haufigkeit
eines Ereignisses, also als objektives Merkmal einer wiederholbaren Situation. Es
geht darum, wie oft etwas in unendlich vielen Versuchen passieren wiirde, wenn
die Bedingungen konstant bleiben. Diese Perspektive ist eng mit der Idee verbun-
den, dass Wahrscheinlichkeiten Eigenschaften der Welt sind, die unabhéngig von
unserem Wissen existieren. Im Gegensatz dazu betrachtet der Bayes’sche Ansatz
Wahrscheinlichkeit als ein Maf} fiir unsere personliche Erwartung an das Eintre-
ten eines Ereignisses, basierend auf Vorwissen. Hier ist Wahrscheinlichkeit sub-
jektiv und wird durch den Beobachter festgelegt. Es ist wichtig zu betonen, dass
"subjektiv” hier nicht willkiirlich bedeutet; der Bayes’sche Ansatz erfordert eine

Aktualisierung der Erwartung angesichts neuer Daten. Kurz gesagt: Der frequen-
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tistische Ansatz fragt ” Wie oft wiirde das passieren?”, der Bayes’sche Ansatz fragt
”Wie wahrscheinlich halte ich das?”. Die beiden Fragen zielen auf unterschiedliche
Aspekte der Unsicherheit ab.

Im Kontext des maschinellen Lernens ist die Bayes’sche Perspektive haufig die
natiirlichere. Viele Probleme im maschinellen Lernen beinhalten Unsicherheit, sei
es aufgrund unvollstéandiger Daten oder inhdrenter Zufilligkeit. Hier werden Wahr-
scheinlichkeiten verwendet, um Vorhersagen zu treffen und Unsicherheit zu quan-
tifizieren. Zum Beispiel konnte ein maschinell gelerntes Modell als Antwort auf die
Frage, was auf dem ersten Bild in Beispiel 2.1.3 zu sehen ist, antworten: ”Zu 80%
ist das eine Sandale.” Diese 80% geben die Wahrscheinlichkeit an, basierend auf
den gelernten Daten, dass das Bild tatséchlich eine Sandale zeigt. Diese Wahr-
scheinlichkeit ist nicht als die Haufigkeit zu interpretieren, mit der das Modell
Sandalen in Trainingsdaten gesehen hat, sondern als ein Ausdruck der Erwartung

des Modells, basierend auf seinem gelernten Wissen.

Ein weiterer wichtiger Unterschied liegt in der Art und Weise, wie mit neuen
Informationen umgegangen wird. Wie erwiahnt, konnen Wahrscheinlichkeiten im
Bayes’sche Ansatz im Kontext sich aktualisierender Datenlage aktualisiert werden.
Diese Fahigkeit ist besonders wertvoll in Szenarien, in denen die Daten begrenzt

oder unvollstindig sind.

2.3.2 Venn-Diagramme
Wir fahren fort mit Eigenschaften, die Wahrscheinlichkeiten erfiillen.

Satz 2.3.1 (Eigenschaften von Wahrscheinlichkeitsrdumen). Sei (£, A, P) ein
Wahrscheinlichkeitsraum und A, B, C, D Ereignisse.

(1) P(Q\ A)=1— P(A)

(2) P(AUB) = P(A)+P(B)— P(ANB) und P(ANB) = P(A)+P(B)—P(AUB)
(3) AC B = P(A) < P(B)

(4) Siebformel:

P(AUBUC)=P(A)+ P(B)+ P(C)
—P(ANB)—-P(ANC)—P(BNC)+P(ANBNC(C).
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Die Eigenschaften, die in diesem Satz aufgelistet werden, sind grundlegend fiir
das Verstdndnis von Wahrscheinlichkeiten und werden in vielen Bereichen der
Mathematik und Statistik angewendet. Beispielsweise hilft die erste Figenschaft,
die Wahrscheinlichkeit des Komplements eines Ereignisses zu berechnen, also die
Wahrscheinlichkeit, dass ein Ereignis nicht eintritt. Die zweite Eigenschaft, die Ad-
ditionsregel fiir Wahrscheinlichkeiten, berechnet die Wahrscheinlichkeit der Verei-
nigung zweier Ereignisse. Die dritte FEigenschaft driickt aus, dass die Wahrschein-
lichkeit eines Teilereignisses niemals grofler sein kann als die Wahrscheinlichkeit
des Gesamtereignisses. Die Siebformel erweitert die Additionsregel auf drei Ereig-
nisse und verdeutlicht die zunehmende Komplexitit bei der Betrachtung mehrerer
Ereignisse gleichzeitig.

Die Aussagen des Satzes lassen sich mit Hilfe von Venn-Diagrammen nach-
vollziehen. Hierbei wird jedes Ereignis durch eine Kreisscheibe dargestellt und

Uberschneidungen visualisieren die Schnittmengen.

Das Venn-Diagramm fiir P(AU B) illustriert, wie die Vereinigung der Ereignisse
A und B berechnet wird: Man addiert die Inhalte von A und B und subtrahiert

den Schnittbereich A N B, um eine doppelte Zéahlung zu vermeiden:

P(AUB)=P(A)+ P(B)—- P(ANB)

Die Siebformel lasst sich ebenfalls durch ein Venn-Diagramm visualisieren.

P(AUBUC)=P(A)+ P(B)+ P(C)—-P(ANDB)
—P(ANC)—-P(BNC)+P(ANBNC(C)
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2.3.3 Ubungsaufgaben

Aufgabe 2.3.1. Bei einer Befragung unter den Studierenden einer Universitét
bezeichne A das Ereignis, dass ein:e zufillig ausgewéahlte:r Studierende:r eine be-
stimmte Wahlpflichtfach-Gruppe wéhlt, und B sei das Ereignis, dass ein:e zufillig

ausgewdhlte:r Studierende:r einen Sprachkurs belegt.

(1) Beschreiben Sie die folgenden Ereignisse mit Worten:
AUB, ANDB, A%, B\ A, AUB, A°U B¢, A°N B°

Hinweis: Hierbei bezeichnet A° das Komplement von A; d.h., A°= {x € Q|
x & A}
(2) Es seien P(A) = 0.3, P(B) = 0.5 und P(AN B) = 0.1 bekannt. Berechnen

Sie die Wahrscheinlichkeiten der oben angegebenen Ereignisse.

Aufgabe 2.3.2. In einem Klasse befinden sich 18 Schiiler:innen. Davon haben 7
an einem bestimmten Projekttag teilgenommen. Es wird nun zufillig eine Gruppe

von 4 Schiiler:innen ausgewdihlt.

(1) Berechnen Sie die Anzahl aller moglichen Gruppen.
(2) Berechnen Sie fir jedes k € {0,...,4} die Wahrscheinlichkeit, dass in der

Gruppe genau k Schiiler:innen am Projekttag teilgenommen haben.

Aufgabe 2.3.3. Wie hoch ist die Wahrscheinlichkeit, dass in einer Gruppe von k
Personen zwei Personen am gleichen Tag Geburtstag haben? Diese Fragestellung
heifit Geburtstagsparadozon, da es eine unerwartete Antwort hat. Wir nehmen an,
dass die Wahrscheinlichkeiten, dass Person ¢ an einen bestimmten Tag Geburtstag
hat, gleichverteilt sind. D.h.

P( Person i hat am Tag x Geburtstag) = 365"
Wie hoch ist die Wahrscheinlichkeit fiir & = 237
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Aufgabe 2.3.4. Aus einem Kartenspiel mit 5 weiflen, 7 schwarzen und 3 roten
Karten werden 3 Karten gezogen. Berechnen Sie die Wahrscheinlichkeit dafiir,
dass mindestens 2 weile Karten gezogen wurden, wenn ohne Zuriicklegen gezogen

wurde.

Aufgabe 2.3.5. In einem Interview auf einen Youtube-News Kanal (Minuten
5:00-5:14) wird berichtet, dass das RKI im Mairz 2020 giinstigstenfalls 300.000
Tote, aber bis zu 1.5 Millionen Tote durch die Covid-19 Pandemie prognostizierte.
Diese Aussage bezieht sich auf Abbildung 8 im RKI Bericht zur Modellierung von
Beispielszenarien der SARS-CoV-2-Epidemie 2020 in Deutschland. Vergleichen Sie
die Aussage mit den Diagrammen in Abbildung 8.

Aufgabe 2.3.6. Definieren Sie in Julia den Vektor

x = [1 2 3 4]

(1) Was ist der Unterschied zwischen x und vec(x)?
(2) Erklédren Sie die Bedeutung der folgenden Befehle.

y = vec(x)
reshape(y, 1, 4)
reshape(y, 2, 2)
[y_i~2 for y_i in y]
map (sqrt, y)

sqrt. (y)

(3) Was macht der folgende Code?

z =0

for y_i in y
z =z + y_i

end

z

(4) Vergleichen Sie das Ergebnis aus (c¢) mit sum(y).
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(5) Wir definieren folgende Funktion:

function f(n::Int)

if n <= 0
@warn "Input $n muss positiv sein."
return nothing

elseif n ==
return n

else
return n * f(n-1)

end

end

Was berechnet £7 Welche Rolle spielt die Deklaration "n: :Int”?

2.4 Zufallsvariablen

Zufallsvariablen sind die Entsprechung der Merkmale (Definition 2.1.2) in der
Wahrscheinlichkeitstheorie. Sie ermoglichen es uns, Information iiber Ereignisse
als Zahlen darzustellen und somit mathematisch zu analysieren. Im Kontext des
maschinellen Lernens repréisentieren Zufallsvariablen die Merkmale, deren Werte

von Daten beeinflusst werden und somit Unsicherheit beinhalten.

Definition 2.4.1. Sei (2, A, P) ein Wahrscheinlichkeitsraum. Eine Zufallsvariable
ist eine Abbildung
X: Q=W

wobei W C R™ der Wertebereich/Stichprobenraum ist. Die Zufallsvariable muss
{we | X(w); <w,i=1,...,n} € A fiir alle w € R" erfiillen.

Der letzte Teil der Definition stellt sicher, dass die Abbildung X messbar ist, d.h.
dass wir Wahrscheinlichkeiten fiir Ereignisse der Form X < w berechnen kénnen

und ist essentiell fiir eine korrekte mathematische Behandlung.

Insbesondere umfasst Definition 2.4.1 auch multivariate Merkmale, wie wir sie
in Definition 2.1.4 beschrieben haben. Die meisten der folgenden Beispiele sind
univariate Zufallsvariablen (n = 1). Allerdings wird der Fall n > 1 im folgenden

Kapitel iiber das maschinelle Lernen wichtig.
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Beispiel 2.4.1. Q = {(wy,ws) | 1 < wy,wy < 6}, der Ereignisraum fiir den
zweifachen Wiirfelwurf. Die Summe der gewiirfelten Zahlen wird durch X : Q@ — R

mit X (wq,wy) = wy + we angegeben.

Dieses Beispiel verdeutlicht, wie eine Zufallsvariable einem zufélligen Ereignis
(die Summe der gewiirfelten Zahlen) eine numerische Darstellung zuordnet. Die
Summe der Augenzahlen ist eine Zufallsvariable, die Werte zwischen 2 und 12

annehmen kann.

Im Folgenden schreiben wir
P(X e A)=P{{we| X(w) e A}).

Die Abbildung, die A C W auf P(X € A) abbildet, nennen wir Verteilungsfunk-
tion der Zufallsvariable X. Sie beschreibt, wie die Wahrscheinlichkeit iiber die

moglichen Werte der Zufallsvariable verteilt ist. Ist a € W, so schreiben wir auch
P(X =a):=P{w e Q| X(w) =a}).

Eine weitere Moglichkeit die Verteilung anzugeben ist es, die kumulative Vertei-
lungsfunktion

F(z) =P{weQ| X(w); <zji=1,...,n})

7zu berechnen.

Beispiel 2.4.2. Fiir den zweifachen (fairen) Miinzwurf sei X die Anzahl der ge-

worfenen Zahlen. Die Verteilung von X ist

P(X =1) = P({(K,Z),(Z,K)}) = % und

P(X =2) = PU(Z 2))) =},

1
P(X =0) = PH(K, K)}) = |
Dieses Beispiel zeigt die Wahrscheinlichkeitsverteilung einer Zufallsvariablen, die

endlich viele Werte annehmen kann. Eine solche Zufallsvariable nennen wir daher

auch endliche Zufallsvariable.
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Im Folgenden beschreiben wir wichtige diskrete Zufallsvariablen.

Definition 2.4.2. (Endlich/diskret Zufallsvariable) Eine Zufallsvariable X heift
endlich/diskret, wenn X () endlich/diskret ist.

Gleichverteilung Fiir den Wertebereich W = {1,...,n} ist die Gleichverteilung
gegeben durch

Notation: X ~ Unif({1,...,n}).

Binomialverteilung Fiir den Wertebereich W = {1,...,n} ist die Binomialver-
teilung mit Parameter p € [0, 1] gegeben durch

P(X =Fk) = <Z> (1= p)yt.

P(X = k) ist die Wahrscheinlichkeit aus n unabhéngigen (siehe Abschnitt 2.5.1)

Bernoulli-Experimenten &k Erfolge zu erzielen. Wir schreiben X ~ Bin(n, p)

Geometrische Verteilung Fiir den Wertebereich W = {1,2,3,...} ist die geo-
metrische Verteilung mit Parameter p € [0, 1] gegeben durch

P(X=k) = (1—p)""-p.

Hierbei ist X die Anzahl der Versuche von unabhéngigen (siehe Abschnitt 2.5.1)
Bernoulli-Experimenten mit Erfolgswahrscheinlichkeit p, bis zum ersten Mal ein
Erfolg eintritt. Wir schreiben X ~ Geom(p).

Als néchstes geben wir wichtige stetige Zufallsvariablen an.

Definition 2.4.3. Sei X eine Zufallsvariable. Dann nennen wir X stetig, falls
X (©) € R"™ einen kontinuierlichen (stetigen) Bereich enthilt.

Die folgende Definition beinhaltet Integrale in R™. Die Theorie hinter solchen
multivariaten Integralen ist nicht einfach und fithrt iiber den Inhalt dieses Ab-
schnitts hinaus. Es reicht aus, sich vorzustellen, dass multivariate Integrale eine

Art “Volumen” in hohreren Dimensionen berechnen.
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Definition 2.4.4. (Dichte) Sei X € R™ eine stetige Zufallsvariable und sei wei-
terhin f : R" — [0, 00) eine integrierbare Funktion, sodass [, f(z) dz = 1. Dann

nennen wir f eine Dichte von X, falls
P(X € A) = / f(z) de.
A

Bemerkung: Nicht alle stetigen Zufallsvariablen haben Dichten. Im Folgenden
beschréanken wir uns auf Zufallsvariablen mit Dichten. Stetige Zufallsvariablen
konnen nur kontinuierlichen Bereichen positive Wahrscheinlichkeiten zuordnen,

nicht aber einzelnen Punkten.

Gleichverteilung Eine Zufallsvariable X hat die Gleichverteilung auf [a, b], wenn X
die Dichte
- falls 2 € [a, b]
f@y=4."

sonst

hat. Wir schreiben: X ~ Unif(]a, b]).

Normalverteilung Eine Zufallsvariable X hat die Normalverteilung auf mit Pa-
rametern 4 € R, 02 > 0, wenn X die folgende Dichte hat:

Wir schreiben X ~ N(u,0?). Falls X ~ N(0,1), heifit X standardnormalverteilt.

2.4.1 Erwartungswert und Varianz

Wie die Lage- und Streuungsparameter im ersten Abschnitt geben Erwartungswert
und Varianz einer Zufallsvariable an, wo die Zufallsvariable zu erwarten ist und
wie weit sie streut. Der Erwartungswert kann als der Durchschnittswert der Zu-
fallsvariablen interpretiert werden, wéihrend die Varianz ein Maf fiir die Streuung

der Werte um den Erwartungswert darstellt.

Im Folgenden sei X € R eine univariate Zufallsvariable.
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Definition 2.4.5. Sei X eine endliche oder diskrete Zufallsvariable. Der Erwar-
tungswert von X ist

E(X):=)Y a-P(X =a).

aceW

Ist X eine stetige Zufallsvariable mit Dichte f(z), so ist der Erwartungswert

B(X) = /OO z- f(z) da.

—00

Der Erwartungswert ist ein Maf} fiir die zentrale Tendenz einer Zufallsvaria-
blen. Er gibt an, welcher Wert im Durchschnitt zu erwarten ist, wenn man das
Experiment wiederholt. Es ist wichtig zu betonen, dass der Erwartungswert nicht
unbedingt ein Wert sein muss, der tatséchlich von der Zufallsvariablen angenom-

men werden kann.

Das folgende Beispiel zeigt, wie der Erwartungswert fiir eine geometrische Ver-
teilung berechnet werden kann (die geometrische Verteilung beschreibt die Anzahl
der Versuche, die ben6tigt werden, bis ein Erfolg eintritt, und der Erwartungswert

gibt an, wie viele Versuche im Durchschnitt benétigt werden).

Beispiel 2.4.3. Sei X ~ Geo(p). Dann ist

E(X):Zk'P<X:k>:Zk'(1—p)’“‘1-pzp'dip(—2(1—p)k) :%.

Dabei haben wir die Formel Y ;7 (1 — p)* =1/(1 — (1 — p)) = 1/p verwendet.

Als néchstes listen wir einige Eigenschaften des Erwartungswertes. Diese Eigen-

schaften sind grundlegend fiir die Berechnung von Erwartungswerten.
Satz 2.4.1. (Linearitit von Erwartungswerten) Seien X, Y Zufallsvariablen. Dann:

E(aX +bY +c¢)=a-E(X)+b-E(Y)+c¢, a,bceR.

Wir illustrieren im néchsten Beispiel wie die Additivitatseigenschaft des Er-
wartungswertes (E(X +Y) = E(X) + E(Y)) verwendet werden kann, um den

Erwartungswert einer komplexen Zufallsvariable zu berechnen.
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Beispiel 2.4.4. (Pokémon - Sammelkarten) Wie viele Pokémon-Karten muss ein:e
Sammler:in im Mittel kaufen, um eine Serie von n = 150 Karten zu erhalten?
Um diese Frage zu beantworten treffen wir zwei (nicht realistische) Annahmen:
(1) Die Karten werden einzeln gekauft; (2) Jede Karte hat die gleiche Wahr-
scheinlichkeit gezogen zu werden. Die allgemeine Form dieses Problems wurde
bereits 1930 von Pdlya beschrieben. [21]. In unserem Fall ist der Ereignisraum
Q = {(w,we,ws,...) | 1 < w; < n}, wobei w, die Karte angibt, die im n-ten

Schritt erworben wurde.

Wir definieren

X; := Anzahl Karten die gekauft werden miissen, um eine neue Karte zu

erhalten, nachdem bereits (i — 1) verschiedene Karten gezogen wurden.

Mit Hilfe des Urnenmodells erhalten wir

P(X, = k) = (i_ 1>k1 oG-

n n

n—(i—1) .

n

d.h. X ist geometrisch verteilt mit Parameter p =

Die Zufallsvariable X := X; + X5 4+ --- + X, gibt dann die Anzahl der Karten

an, die gezogen werden miissen, um alle n Karten zu bekommen. Es gilt daher

EX)=EXi+---+X,) =E(Xy)+-+ EX,)

= ;1 R—LHV (nach Beispiel 2.4.3)
n n n "1

T T o Z—n-H,
Ctg o= Zl =

Fiir n = 150 haben wir H,, = 5.6. D.h. man muss 5.6 mal mehr Karten kaufen, als

es Karten insgesamt gibt, um alle n = 150 zu sammeln.

Als néchstes definieren wir die Varianz einer Zufallsvariablen. Die Varianz ist
ein Maf fiir die Streuung der Werte einer Zufallsvariablen um ihren Erwartungs-
wert. Eine hohe Varianz deutet auf eine grofle Streuung hin, wéhrend eine niedrige

Varianz auf eine geringe Streuung hinweist.
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Definition 2.4.6. Die Varianz einer Zufallsvariable X ist definiert als
Var(X) := E([X — BE(X)]?).
Die Standardabweichung von X ist \/\m .
Beispiel 2.4.5. Sei X ~ N(u,0?). Dann ist E(X) = pu, Var(X) = ¢% und die

Standardabweichung von X ist o.

2.4.2 Ubungsaufgaben

Aufgabe 2.4.1. Sei X eine diskrete Zufallsvariable mit Werten N. Die Vertei-

lungsfunktion F' der Zufallsvariablen X sei folgendermafien gegeben:

0, firz <1

1—4, firzelkk+1), keN k>1

(1) Bestimmen Sie folgende Wahrscheinlichkeiten
P(X <2), P(X<2), P(X<3), P(X>3)

(2) Geben Sie die Wahrscheinlichkeiten P(X = k), k € N an.

Aufgabe 2.4.2. Eine Klausur hat 4 Aufgaben. Die Zufallsvariable X gibt an,
wieviele Aufgaben ein:e zuféllig ausgewéahlte:r Schiiler:in richtig gelost hat. X kann
also die Werte 0, 1, 2, 3 oder 4 annehmen. Wir nehmen dabei an, dass jeder Wert

mit gleicher Wahrscheinlichkeit angenommen werden kann.

(1) Bestimmen Sie die Wahrscheinlichkeitsfunktion P(X = x) und die Vertei-
lungsfunktion F(x) von X.

(2) Berechnen Sie den Erwartungswert von X.

(3) Berechnen Sie die Varianz von X mittels der Formeln:

(a) Var(X)=E((X —E(X))?*); (b) Var(X)=E(X?) — (E(X))>.
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Aufgabe 2.4.3. Fiir diese Aufgaben sollten Sie in Julia die Pakete DataFrames,
Plots und RDatasets installiert haben.

Rufen Sie den survey Datensatz auf:

survey = dataset ("MASS", "survey")
Dieser Datensatz beinhaltet die Antworten von 237 Statistik Studierenden der
University of Adelaide zu einigen Fragen. Die Antworten sind, u.A., unter den
folgenden Abkiirzungen eingetragen.
Wr.Hnd: Spannweite der Schreibhand in cm.
Pulse: Puls der Studierenden.

Smoke: Ob die Studierenden rauchen (Heavy, Regul (regularly), Occas (occasional-

ly), Never).

Height: Grofle der Studierenden in cm.

(1) Erklédren Sie, was die folgenden Befehle bewirken.

names (survey)

describe (survey)

Insbesondere, was beschreibt die letzte Spalte von describe (survey)?

(2) Veranschaulichen Sie in einer Grafik gleichzeitig (1) die Verteilung der Korpergrofie
der Studierenden und (2) die Verteilung der Korpergrofie gegeben Smoke.

(3) Veranschaulichen Sie grafisch das multivariate Merkmal (Wr.Hnd, Pulse).

(4) Die empirische Korrelation der Daten (x1,y1), ..., (xn, yn) zweier Merkmale
X und Y ist gegeben durch

S (i — D)y —5) |
VO (@ - 22) - (X, 0 - 9)?)

Cor =

Die Korrelation ist ein reeller Wert zwischen —1 und 1. Ist die Korrelation
positiv, dann gehen kleine Werte der einen Variable iiberwiegend einher mit
kleinen Werten der anderen Variable und gleichfalls fiir grole Werte. Fiir

eine negative Korrelation ist das genau umgekehrt.

Berechnen Sie die Korrelation der Merkmale aus Aufgabenteil (c¢) und beur-

teilen Sie das Ergebnis.
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2.5 Der Satz von Bayes

Im maschinellen Lernen wollen wir bei sich &ndernder Datenlage verstehen, wie sich
Wahrscheinlichkeiten veréindern. Die zentrale Frage in diesem Abschnitt ist: Ange-
nommen, wir haben zwei Ereignisse A und B. Wenn wir wissen, dass B eingetre-
ten ist oder eintreten wird, wie dndert sich die Wahrscheinlichkeit, dass A eintritt?
Wir nennen dies auch die Wahrscheinlichkeit von A gegeben B und schreiben dafiir
P(A | B). Die Wahrscheinlichkeit heifit auch bedingte Wahrscheinlichkeit. Dieses
Konzept ist grundlegend, um Schlussfolgerungen aus Daten zu ziehen und Modelle

an neue Informationen anzupassen. Hier ist ein Venn-Diagramm der Situation:

Definition 2.5.1. Sei (2, A, P) ein Wahrscheinlichkeitsraum und seien A, B € A

mit P(B) > 0. Dann ist
P(ANB)
P(B)

die bedingte Wahrscheinlichkeit von A gegeben B.

P(A|B) =

Die bedingte Wahrscheinlichkeit kann unsere Einschétzung der Wahrscheinlich-
keit eines Ereignisses auf der Grundlage neuer Informationen éndern. Die Bedin-
gung P(B) > 0 ist wichtig, um eine Division durch Null zu vermeiden. Wir geben

auch eine Definition von bedingten Dichten.

Definition 2.5.2. Es sei (X,Y) € R" x R™ eine Zufallsvariable mit Dichte f(x y)
und = € R™. Angenommen X hat Dichte fx. Die bedingte Dichte von Y gegeben
X = ist

fxy)(@,y)

fY|X:ac<y> = fX—(SC)

Wir schreiben (Y | X = z) fir die Zufallsvariable mit dieser Dichte und nennen

sie Y gegeben X = z.
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Beispiel 2.5.1. Wiirfelwurf: Q = {1,2,3,4,5,6}, A = {2} (= ein Zwei wird
gewiirfelt) und B = {2,4,6} (= eine gerade Zahl wurde gewiirfelt). Dann gilt:
(ANB) 1/6 1

P
PATE) = =pG =3/6 3

und P(A) = 1/6. D.h. falls wir wissen, dass eine gerade Zahl gewtirfelt wird, wissen

wir, dass wir eher eine 2 werfen, als wenn wir diese Information nicht hétten.

Dieser einfache Wiirfelwurf verdeutlicht, wie die bedingte Wahrscheinlichkeit
unsere urspriingliche Einschétzung der Wahrscheinlichkeit verdndert, wenn wir

zusatzliche Informationen erhalten.

Der Bayes’sche Wahrscheinlichkeitsbegriff hat seinen Namen aus folgendem Satz.

Satz 2.5.1. (Satz von Bayes’) Sei (Q, A, P) ein Wahrscheinlichkeitsraum und

A, B € A. Dann gilt:
P(B|A)-P(A)

P(A|B) ===

Der Satz von Bayes stellt eine fundamentale Beziehung zwischen der Wahr-
scheinlichkeit von A gegeben B und der Wahrscheinlichkeit von B gegeben A her.
In Anwendungen des maschinellen Lernens ist oft B das Auftreten neuer Daten
und A sind die Parameter eines Modells. Um zu beurteilen, ob die Parameter im
Rahmen der neuen Datenlage gut gewéhlt sind, kénnen wir mit Hilfe des Sat-
zes von Bayes die Rollen von A und B vertauschen und die Wahrscheinlichkeit
der Daten B gegeben die Parameter A optimieren. Dies ist die Grundlage vieler

Bayes’scher Lernverfahren.

Weiterhin erhalten wir

P(A[B) _P(B|A)

P(A) P(B)

D.h., falls B das Auftreten von A wahrscheinlicher macht (Plgf(lflﬁ)

macht auch A das Auftreten von B wahrscheinlicher. Dieses Verhaltnis wird auch
als Likelihood-Ratio bezeichnet.

> 1), dann

Es gibt auch einen Satz von Bayes fiir Zufallsvariablen mit Dichten.
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Definition 2.5.3. (Satz von Bayes’ fiir Dichten) Seien X € R" und Y € R™
Zufallsvariablen mit Dichten fx und fy. Zudem bezeichne fy|x—, die Dichte von Y’

gegeben X = x. Dann gilt

fY(y)
fx(x)

fY|X=x(y) = fX\Y=y($) :

2.5.1 Stochastische Unabhangigkeit

Als Néchstes diskutieren wir das Konzept der stochastischen Unabhéngigkeit. Zwei
Ereignisse A, B sollen unabhéngig sein, wenn das Ereignis B die Wahrscheinlichkeit
von A nicht beeinflusst; d.h. P(A | B) = P(A).

Definition 2.5.4. Sei (2, A, P) ein Wahrscheinlichkeitsraum und A, B € A. Dann

nennen wir A und B stochastisch unabhéngig, wenn
P(A| B)=P(A).

Da P(A| B) = ‘?QB , gilt stochastische Unabhéngigkeit von A und B genau

dann, wenn

P(ANB) = P(A) - P(B).

Wenn Ereignisse unabhéngig sind, kénnen wir die Wahrscheinlichkeit ihres ge-
meinsamen Eintretens einfach als das Produkt ihrer individuellen Wahrscheinlich-

keiten berechnen.

Beispiel 2.5.2. 2-facher Wirfelwurf: Q = {(wy,ws) | 1 < wy,wy < 6} und
A = {im ersten Wwrf eine 2}, B = {im zweiten Wurf eine 2} Falls die Wiirfe un-

abhéngig sind, dann sind A und B stochastisch unabhéngig. Dann gilt

P{es werden 2 Zweien geworfen} = P(A N B)

= P(A)- P(B)
111
6 6 36

Wir erweitern die Definition auf mehr als zwei Ereignisse.
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Definition 2.5.5. Sei (2, A, P) ein Wahrscheinlichkeitsraum und A;,..., A, € A

Ereignisse. Dann heiflen die A;
(1) paarweise (stochastisch) unabhéngig, falls P(A; N A;) = P(4;) - P(4;) fur
alle © # j gilt.

(2) gemeinsam (stochastisch) unabhéngig, falls

P(AiN...nAy) =[] PA)

i=1
fir alle Wahlen von Indizes 1 <4y < -+ < i < n.

(Es gilt: (2) impliziert (1), aber im Allgemeinen gilt die Riickrichtung nicht).

Beispiel 2.5.3. Ein zentrales Beispiel im Kontext von Unabhéngigkeit ist die

Binomialverteilung. Hierbei modellieren wir n unabhéngige Zufallsexperimente

wi, ..., w, mit Ausgang in {0,1}. D.h., w; = 0 oder w; = 1. Fiir die Binomi-

alverteilung nimmt man an, dass P({w; = 0}) = p und P({w; = 1}) = 1 —p, dass

also die Wahrscheinlichkeit, dass 0 eintritt, fiir alle Experimente gleich ist. Wegen
der stochastischen Unabhéngigkeit gilt dann

P((wr,..owa)) = pb - (1= p)"™, k= #{i | w; = 0},

Insbesondere gilt:

n

P({genau k der w; sind 0}) = (k> P (L=p)"

da (Z) die Anzahl der k-elementigen Teilmengen in einer Menge mit n Elementen

angibt. Diese Verteilung nennen wir die Binomialverteilung.
Die Definition von Unabhéngigkeit iibertragt sich direkt auf Zufallsvariablen.

Definition 2.5.6. Die Zufallsvariablen X, ..., X,, heien (stochastisch) unabhéngig,
falls fiir alle Intervalle Ay, ..., A, C W gilt:

n

P(X; € A, X € Ay, X, € Ay) = [[P(Xi € A,

=1
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2.5.2 Ubungsaufgaben

Aufgabe 2.5.1. Ein E-Mail-Anbieter méchte zum Schutz seiner Kund:innen einen
Spam-Filter anbieten. Es gibt zwei Merkmale (Merkmal 1 und Merkmal 2), mit
denen Spam-Mail identifiziert werden. Damit konnen die Mails in drei Gruppen

eingeteilt werden:

Gruppe 1:  Mails mit Merkmal 1
Gruppe 2:  Mails mit Merkmal 2 und ohne Merkmal 1
Gruppe 3:  Mails ohne die Merkmale 1 und 2

(d.h. in Gruppe 1 sind sowohl die Mails mit Merkmal 1 und nicht 2, als auch die
mit 1 und 2).

Die Anteile der drei Gruppen am Gesamtmailaufkommen und die Spam-Mail-
Quoten (Anteil der Spam-Mails in der jeweiligen Gruppe) sind in der folgenden
Tabelle zu finden:

Gruppe | Anteil an den Mails | Spam-Mail-Quote

1 5% 95%
2 15% 75%
3 80% 20%

(1) Ubersetzen Sie die sechs Prozentzahlen der Tabelle in Wahrscheinlichkeiten

von Ereignissen.
(2) Wie grof ist die Wahrscheinlichkeit, dass eine Mail eine Spam-Mail ist?
(3) Gegeben Sei eine Spam-Mail. Wie grof} ist die Wahrscheinlichkeit, dass sie

identifiziert wird?

Aufgabe 2.5.2. Ein Unternehmen sammelt Kundendaten aus drei verschiedenen
Quellen: Online-Formulare, mobile Apps und Social Media. 50% der Daten stam-
men aus Online-Formularen, und jeweils 25% aus mobilen Apps und Social Media.
Die Daten aus jeder Quelle haben unterschiedliche Fehlerraten: 1% der Daten aus

Online-Formularen sind fehlerhaft, 2% aus mobilen Apps und 4% aus Social Media.
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(1) Ubersetzen Sie die gegebenen Prozentsitze in (bedingte) Wahrscheinlichkei-

ten fiir geeignet gewéhlte Ereignisse.

(2) Bestimmen Sie die Wahrscheinlichkeit, dass ein zuféllig ausgewéhltes Daten-

element fehlerhaft ist.

Hinweis: Verwenden Sie den Satz von der totalen Wahrscheinlichkeit fiir drei

Ereignisse: Sind A;, Ag, A3 drei Ereignisse, so dass
AlmAQZAlmAnggmA;g:@ and BC(A1UA2UA3),
dann gilt

P(B) = P(B| A1) - P(Ay) + P(B| Ay) - P(As) + P(B | Ay) - P(Ay).

(3) Wir wahlen zufillig ein Datenelement aus und stellen fest, dass es fehlerhaft
ist. Bestimmen Sie die Wahrscheinlichkeit, dass dieses Datenelement aus der

mobilen App stammt. Verwenden Sie den Satz von Bayes.

2.6 Lineare Algebra

Die Algorithmen des maschinellen Lernens und der KI basieren im Kern auf Me-
thoden der linearen Algebra. Stellen wir uns Daten als grofie Tabellen vor, in denen
jede Zeile einen einzelnen Datenpunkt reprasentiert und jede Spalte ein Merkmal
dieses Datenpunkts beschreibt, so lassen sich diese Tabellen als Matrizen — ein zen-
trales Objekt der linearen Algebra — verstehen. Die Interpretation von Daten als
Matrix eroffnet uns Moglichkeiten wie Matrixmultiplikation, um Daten zu manipu-
lieren. Algorithmen wie z.B. neuronale Netze verwenden Matrizenmultiplikation,
um diese Daten zu transformieren und Merkmale zu extrahieren, die fiir die Da-
tenanalyse relevant sind. Dies ist die Motivation, uns in diesem Kapitel mit den
grundlegenden Konzepten der linearen Algebra vertraut zu machen. Die lineare
Algebra ist somit nicht nur ein abstraktes mathematisches Gebiet, sondern bildet

die Grundlage fiir die Methoden des maschinellen Lernens.
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2.6.1 Vektoren

Vektoren sind Listen von reellen Zahlen. Z.B. ist

()

ein Vektor mit den zwei Eintrdgen 1 und 3. Wir sagen der Vektor hat die Lénge 2,
weil er zwei Eintrage hat. Geometrisch kann man sich einen Vektor als einen Pfeil
im Raum vorstellen, dessen Lénge und Richtung durch die Zahlen in der Liste

bestimmt werden. Das néchste Bild zeigt den Vektor in der Kartesischen Ebene.

A4
1
30 <>
3
2
1
: : : : : P
-3-2 | 12 3 4
921

Die Menge aller Vektoren der Liange n bezeichnen wir mit

Uy
R" = : Up, ..., U, €R

Unp

Dies ist ein sogenannter Vektorraum. Wir kénnen Vektoren addieren und sie mit

einer skalaren Zahl a € R multiplizieren, d.h.,

Uq U1 U + U1 auq

U9 Vg U + V2 als
U= o, v= s utv:i= . , a-u:i=

U, Un, Uy, + Uy, aly,

Vektoraddition und Skalarmultiplikation ist also komponentenweise definiert.
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Beispiel 2.6.1. Es ist

2 542 7
+]1-2]=(6-2]=]|4
~1 4 —1+14 3

Die Addition von Vektoren ist assoziativ und kommutativ. Fiir u,v € R" gilt:
utv=v+u, (uU+v)+w=u+(v+w).

AuBlerdem hat Vektoraddition ein neutrales Element und inverse Elemente:

Das bedeutet

ut+o=o0o+u=1u

und
u+ (—u) = o.

Vektoraddition und Skalarmultiplikation kann geometrisch interpretiert werden:
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Vektoraddition legt die einzelnen Vektoren hintereinander und verbindet sie, wahrend

Skalarmultiplikation Vektoren streckt oder staucht.

Vektorarithmetik — wie Arithmetik in den reellen Zahlen — erfiillt gewisse Regeln.

Satz 2.6.1. Fiir alle a,b € R und u,v € R™ erfillt die skalare Multiplikation

(1) (a+b)-v=a-v+b-v, (3) (a-b)-v=a-(b-v),
(2) a-(u+v)=a-u+a-wv, (4) 1-v=nw0.

Definition 2.6.1. Fiir Vektoren uv € R™ mit Eintrdgen u; und v € R™ mit Ein-

tragen v; definieren wir das Skalarprodukt als

(u, v) := Zu, - V.
i=1
Wir sagen, dass u orthogonal zu v steht, falls (u,v) = 0. Die Norm ist

[l =/ {u, ).

Beispiel 2.6.2. Seien

Dann ist (u,v) =5-2+6-(—2)+ (—1) -4 = —6. Die Normen der zwei Vektoren

sind

lull = V{u,u) = V52 + 62+ (=12 = V62, o] = 22+ (-2)2 + 42 = V24.
Es gilt fiir a,b,u,v € R” und s,t € R:
(a+tb,u+ sv) = {(a,u) + t{b,u) + s(a,v) + st(b,v).

Die Norm |ju|| von u € R"™ misst die Lénge eines Vektors. Die Bedeutung des

Skalarprodukts zwischen u und v ist

cos(Winkel zwischen v und v) = % (2.1)
ull - ||v
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Die Gleichung in (2.1) kénnen wir wie folgt beweisen: Sei v der Winkel zwischen

u und v:

Der Abstand von u nach v erfiillt, laut Kosinussatz, die Gleichung
lu = ol = [Jull® + [ol* = 2ljull - vl - cos(y).
Andererseits gilt
= ol]2 = (= v, u— v) = () — 20, v) + (0,0 = Jul]2 + o]2 = 2w, 0).

Vergleichen wir diese zwei Gleichungen erhalten wir (2.1).

Im maschinellen Lernen wird der Ausdruck (u,v)/(||u|| - ||v||) auch cosine simi-
larity genannt. Die Ahnlichkeit zweier (Daten-)Vektoren wird durch den Winkel

zwischen ihnen gemessen. Dementsprechend heif3t

{u, v)

d(u,v) =1-—
[l - ]l

Kosinus-Abstand zwischen v und v.

2.6.2 Matrizen

Matrizen werden in vielen Bereichen des maschinellen Lernens verwendet, um Da-
ten darzustellen und zu manipulieren. Beispielsweise konnen Bilder als Matrizen
von Pixelwerten dargestellt werden, und Algorithmen fiir die Bilderkennung ver-

wenden oft Matrizenoperationen.
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Eine m x n-Matrix ist eine rechteckige Anordnung oder Tabelle reeller Zahlen a;;:

a1 a2 ... Qip

a921 22 ... QA9pn
A=

Am1 Am2 ... Omn

Wir schreiben

A = (a;;) € R™"

und nennen a;; die Eintriage, m die Anzahl der Zeilen und n die Anzahl der Spalten
der Matrix. Wenn m = n, wird die Matrix als quadratisch bezeichnet. Eine (1,n)-
Matrix ist ein Zeilenvektor, eine (m, 1)-Matrix ist ein Spaltenvektor. Zwei Matrizen

sind gleich, wenn alle Eintriage gleich sind.

Die Matrix A hat n Spaltenvektoren

und sie hat m Zeilenvektoren

Wir schreiben auch

(2.2)
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Ahnlich wie bei Vektoren definieren wir die Addition fiir Matrizen A = (a;;)
und B = (b;;) € R™*™ durch

ain+bun ... an+bi, | ]

am1+bm1 amn+bmn | ’

Ebenso die skalare Multiplikation mir ¢ € R :

cayy ... CQip | |
cA = : : =\llcay ... ca,|,

Cm1 ... COmn ’ |

wobei a; und b; die Spaltenvektoren von A und B sind. Diese Operationen sind as-
soziativ, kommutativ und distributiv, sodass der Raum der reellen m x n Matrizen

auch ein Vektorraum ist.

2.6.3 Matrix-Vektor und Matrix-Matrix Produkt

Im letzten Abschnitt haben wir die Addition von Matrizen definiert. Jetzt definie-
ren wir das Produkt zweier Matrizen. Beachte, dass nicht alle Matrizen miteinander

multipliziert werden konnen; die Seitenldngen miissen kompatibel sein.

Beispielsweise basieren neuronale Netze im Kern auf sequentiellen Matrixmul-
tiplikationen. Dies werden wir im néchsten Kapitel im Detail ausfithren. In diese
Abschnitt lernen wir zunéchst die abstrakt mathematische Definition kennen. Es
ist dabei aber wichtig zu betonen, dass diese abstrakte Definition vielen konkreten

Anwendungen zu Grunde liegt.

Definition 2.6.2. Sei A = (a;;) € R™" und B = (bgy) € R™". Dann definieren
wir das Matrixprodukt C' = (¢y) := AB € R™*" durch

T
Cie =Y ais-by, 1<i<m, 1<j<n
s=0

Dies ist die Definition der Matrixmultiplikation auf der Ebene der einzelnen Ein-

trage. Wir entwickeln im weiteren Verlauf dieses Abschnitts einige Konzepte, die
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uns helfen werden, die Multiplikation einfacher und iibersichtlicher darzustellen.

Zunéchst aber ein Beispiel.

1 1
12 2
Beispiel 2.6.3. s 2 —1| = > :
214 0 1 45

Definition 2.6.3. Sei A = (a;;) € R™*™ eine Matrix, dann éndert die transpo-
nierte Matriz A" Zeilen mit Spalten, d.h.,

a1 921 ... QApt
AT Q12 A2 ... Q(p2 c RM
A1y A2y - - - Qpm

Es gilt dabei
(ANYT=A und (A+B)"'=A"+B".

In Zeilen- und Spaltenvektornotation kénnen wir die transponierte Matrix wie folgt

schreiben:

Das heifit, das Transponieren einer Matrix verwandelt Spalten in Zeilenvektoren

und umgekehrt.

Fir Matrizen

- 51— | |
S = : eER™" T=1¢ ... t,| eR™"

- Sm ‘ ’

kann das Matrixprodukt geschrieben werden als

<817 t1> e <81, tn>
ST = : : € R™". (2.3)

(Sm, t1) oo (Sm, tn)
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Satz 2.6.2. Seien A, B,C Matrizen, so dass die folgenden Formel definiert sind.
Dann gilt
(1) (AB)C = A(BC) (Assoziativitat),
(2) (A+ B)C = AC + BC und A(B+ C) = AB + AC' (Distributivitit),
(3) (aA)B = a(AB) = A(aB) (Kompatibilitat mit der Skalarmultiplikation,).
Die transponierte Matrix eines Produkts ist das Produkt der transponierten

Matrizen, aber die Reihenfolge kehrt sich um (beachte, dass das Matrix Produkt
nicht kommutativ ist, die Reihenfolge zihlt!): (AB)" = BTAT.

Die Identitdtsmatriz ist

1 0 . 0

01 ... 0
Ir=1. . | e R

00 ... 1

Wir haben fiir alle A € R™*" und B € R**¥:
Al = A, IB=B.

Ein wichtiger Spezialfall ist Matrix-Vektor Multiplikation. Sind

- a1 — U
A= : eR™” wund wu=|: | eR",

— Ay — Uy,
so ist das Produkt Aw definiert durch

<al> u>
Au = : e R™.

(A 1)

Dies bedeutet, dass das Ergebnis der Multiplikation einer m x n-Matrix mit einem
n-Vektor ein Vektor im R™ ist, dessen i-te Komponente das Skalarprodukt des

i-ten Zeilenvektors von A mit dem Vektor u ist. Z.B. gilt immer
Tu = u.
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Beispiel 2.6.4. Das Produkt einer 2 x 3-Matrix mit einem Vektor der Lénge 3 ist

ein Vektor in R?:
-2
23\ () _ (o
214 S \=3)
0

Die erste Komponente des Ergebnisvektors ist
1-(=2)+2-143-0=0
und die zweite Komponente ist
2:(=2)+1-14+4-0=-3.
Jede Matrix A € R™*" definiert somit eine Abbildung
¢a:R" = R"™  u— Au. (2.4)

Diese Art von Abbildungen nennen wir lineare Abbildungen. Lineare Abbildungen
spielen eine zentrale Rolle in der Mathematik, da sie wichtige Eigenschaften wie die
Erhaltung von Vektoraddition und Skalarmultiplikation besitzen. Dies bedeutet,
dass fiir alle Vektoren u,v € R™ und alle Skalare t € R gilt:

da(u+tv) = pa(u) +tda(v), (2.5)

oder dquivalent,
Au+tv) = Au + tAv.

Diese Eigenschaft ist essentiell z.B. in der Sprachverarbeitung, wo Worter oder
Séatze als Vektoren dargestellt werden und lineare Abbildungen verwendet werden,
da dadurch semantische Beziehungen erhalten bleiben. Weitere Anwendungen fin-
den sich in der Bildverarbeitung, der Datenkompression und vielen anderen Be-
reichen des maschinellen Lernens. Das Versténdnis linearer Abbildungen ist daher
ein Schliissel zum Versténdnis vieler Algorithmen und Techniken im Bereich der
kiinstlichen Intelligenz.
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2.6.4 Ubungsaufgaben

Aufgabe 2.6.1. Berechnen Sie die folgenden Vektor- und Matrixoperationen (wenn

moglich):
1 —2
) 212]+5] 3 [;
4 0
7 -5
@ 2| 5 |+3|-1|-4]-3];
—6 3 9
2 3 15 —11 13 2
@ 12 =3 s|+2| 7 5 —21|;
-9 —-26 6 16 2 =24
1 2 -5 11 13
43| 5 7|+2|-8 17 —27
—11 6 -2 12 4

Aufgabe 2.6.2. Seien

0 1 =2 0 -3 4 11 1 100
A=14 -1 2 |,B=|0 6 8|, C=]|24 —-1],I=1010
0 -7 2 5 6 35 0 0 01

(1) X =A+B. 6) C=A+B-X
(2) X=A-B (7) X=ATB+1

(3) X =3B —2C (8) A= AB— X"
(4) X = AB. (9) X = BCBT

(5) X = AB— BA (10) X = ATA— BB,
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Aufgabe 2.6.3. Berechnen Sie die folgenden Matrixprodukte:

1 2 5 6
(1) : ;
3 4 7 8 (3) -1 3
5 3 5 -2 1 1 2 3 — 2 =2
(2)( )-50; ) (2 3 4 2 -3 1
1 4 1
3 3 3 2 1 0 1 -1
Aufgabe 2.6.4. Seien a = (1,—4,0,6), b = (0,3,7,—2) und ¢ = (5,0,-3,2).
Berechnen Sie .
(1) x =2a+ 50. 3) x=a"—b" +5c". (5) a+c=2b—x.

(2) x=a—2b+c (4) z=ab" +2.

Aufgabe 2.6.5. Gegeben sei die folgende Tabelle mit den Noten von 8 Studieren-

den in einem Kurs.

Initialen Note
AB 1
CD
EF
GH
KL
NO
RS
TU

W o= R NN W

(1) Um welche Art von Merkmalen handelt es sich hier?

(2) Stellen Sie die Daten durch eine reelle Matrix A € R™*™ dar. Wie lauten n

und m?
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3 Grundlagen der Kiinstlichen
Intelligenz (KI) und des
Maschinellen Lernens (ML)

3.1 Begriffskldarung

In diesem Abschnitt werden die grundlegenden Konzepte der Kiinstlichen Intelli-
genz (KI), des Maschinellen Lernens (ML) und des Deep Learning (DL) erldutert
und ihre Zusammenhénge aufgezeigt. Jeder Begriff wird detailliert betrachtet und

anhand von Beispielen veranschaulicht. Im Kern lésst sich feststellen, dass
KI > ML D DL.

Dies bedeutet, dass Deep Learning eine spezielle Form des Maschinellen Lernens
darstellt, und Maschinelles Lernen wiederum eine spezielle Form der Kiinstlichen
Intelligenz. KI ist das umfassendste Gebiet, ML ist darin enthalten, und DL ist
ein Teil des ML. Jeder Bereich baut auf den Erkenntnissen und Techniken des
vorherigen auf, verfolgt aber unterschiedliche Ansétze, um das Ziel intelligenter

Maschinen zu erreichen.

3.1.1 Kiinstliche Intelligenz (KI)

Stellen Sie sich vor, Sie versuchen, ein komplexes Spiel zu meistern, einen Text in
eine andere Sprache zu iibersetzen oder ein Fahrzeug zu steuern. All diese Aufga-
ben erfordern Intelligenz. Die KI ist der Versuch, diese Intelligenz in Maschinen
abzubilden.
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Rich [22] definierte kiinstliche Intelligenz wie folgt:

7 Artificial Intelligence is the study of how to make computers do things

at which, at the moment, people are better.”

Kiinstliche Intelligenz (KI) zielt darauf ab, Maschinen zu entwickeln, die Auf-
gaben bewiltigen koénnen, die menschliche Intelligenz erfordern. Dazu gehoren
Fahigkeiten wie Problemlosung, logisches Denken, Entscheidungsfindung, Spra-
cherkennung, visuelle Wahrnehmung (das Erkennen von Objekten in Bildern), das
Verstehen und Erzeugen von Sprache sowie das Lernen aus Erfahrungen. Das Be-
streben, Intelligenz zu schaffen, ist nicht neu, hat aber mit dem Aufkommen moder-
ner, leistungsstarker Computer in den letzten Jahrzehnten erheblich an Dynamik

gewonnen.

Frithe Ansétze in der Informatik versuchten dies durch direkte Programmie-
rung zu erreichen. Dabei gaben Programmierer der Maschine eine umfangreiche
Sammlung von Regeln vor, die sie befolgen sollte. Das Problem bestand darin,
dass diese Regeln oft unflexibel waren und sich nur schwer auf komplexe, reale
Probleme anwenden lieen. Ein klassisches Beispiel ist ein Schachprogramm. Um
gut zu spielen, mussten frithe Schachprogramme mit Hunderttausenden von Re-
geln programmiert werden, die alle denkbaren Spielsituationen abdecken sollten.
Dies war sehr aufwendig und konnte nie vollsténdig sein. Ein weiterer Nachteil war
die Schwierigkeit, solche Systeme zu warten und zu erweitern, da jede neue Re-
gel unerwiinschte Nebeneffekte haben und das System destabilisieren konnte. Eine
bessere Strategie ist es, dem System selbst zu ermdoglichen, aus Daten zu lernen

und sich so flexibel an neue Situationen anzupassen.

Der Kern moderner KI-Systeme ist daher Software, die grole Datenmengen ver-
arbeitet, um Losungen zu generieren. Dabei werden Muster in den Daten gesucht,
um Vorhersagen fiir komplexe Situationen zu treffen. Dies erfordert die Anwen-
dung verschiedener mathematischer Methoden aus der linearen Algebra, der Wahr-
scheinlichkeitstheorie und der Statistik. Dazu miissen die Daten in Form von Zah-
len vorliegen; sie miissen also digitalisiert sein. Viele Daten, wie z.B. Bilder, Ttne
oder Wérter, lassen sich leicht digitalisieren. Bei anderen Daten hingegen, z.B.
Gefiihle oder Sinneswahrnehmungen, ist nicht unbedingt klar, wie sie zu digitali-

sieren sind.

Daher iibersteigt die menschliche Intelligenz die Fahigkeiten aktueller KI-Systeme,
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die hauptséichlich auf Mustererkennung basieren. So umfasst menschliche Intel-
ligenz auch die korperlich-kinésthetische Intelligenz (die Fahigkeit, den eigenen
Korper zu steuern und einzusetzen), die interpersonelle Intelligenz (die Fahigkeit,
Stimmungen, Absichten und Motivationen anderer Menschen zu erkennen und zu
verstehen), sowie die existenzielle Intelligenz (ermoglicht, tiber Fragen der eige-
nen Existenz und des Sinns des Lebens zu reflektieren) [13]. Diese Aspekte von

Intelligenz sind fiir aktuelle KI-Systeme schwer zu erfassen.

3.1.2 Maschinelles Lernen (ML)

Maschinelles Lernen (ML) ist der Teilbereich der KI, der den Ansatz verfolgt, Ma-
schinen aus Daten [ernen zu lassen, anstatt sie mit expliziten Regeln auszustatten.
Das bedeutet, dass dem System eine grofle Menge an Daten prisentiert wird, und
es selbststandig Muster in diesen Daten erkennt. Diese Mustererkennung dient als
Grundlage fiir das Treffen von Vorhersagen. Ein grundlegender Vorteil dieses An-
satzes ist, dass das System seine Leistung im Laufe der Zeit durch die Verarbeitung

zusatzlicher Daten verbessern kann.

Stellen Sie sich zum Beispiel vor, Sie mochten einen Algorithmus entwickeln,
der E-Mails automatisch als Spam oder Nicht-Spam einordnet. Anstatt manuell
Regeln zu definieren (z.B.: E-Mails mit den Wértern ’Angebot’ oder ’Gewinn’ sind
Spam), geben Sie dem Algorithmus einen Datensatz mit Tausenden von E-Mails,
die bereits als Spam oder Nicht-Spam markiert sind. Der Algorithmus analysiert
diese Daten, erkennt die Muster und lernt, welche Merkmale einer E-Mail typisch
fiir Spam sind (z.B. bestimmte Worter, der Absender, die Haufigkeit bestimmter
Zeichen). Je mehr E-Mails der Algorithmus analysiert, desto besser wird er in
der Spam-Erkennung. Dabei ist dem/der Programmierer:in oft nicht klar, welche
spezifischen Regeln das System verwendet, um Spam zu erkennen. Das System hat

seine eigenen Regeln aus den Daten abgeleitet.

ML ist somit ein datenbasierter Ansatz fiir KI. Er ist besonders niitzlich fiir
Probleme, bei denen es schwierig oder unmoglich ist, explizite Regeln zu definieren.
Eine ausfiihrliche Abhandlung der Mathematik hinter dem maschinellen Lernen
ist [11].
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3.1.3 Deep Learning (DL)

Deep Learning (DL) ist ein Teilbereich des Maschinellen Lernens, der sich auf
eine bestimmte Art von System zur Mustererkennung konzentriert, ndmlich auf
sogenannte ”tiefe neuronale Netze” (deep neural networks). Die Struktur dieser
kiinstlichen neuronalen Netze ist dabei der Struktur des menschlichen Gehirns
nachempfunden. Das Netzwerk besteht aus mehreren Schichten, von denen je-
de unterschiedliche Merkmale aus den Daten extrahiert. Die Kombination dieser
Merkmale erméglicht es dem Netzwerk, komplexe Zusammenhénge zu erkennen.

Wir werden kiinstliche neuronale Netze im Detail in Abschnitt 3.3 behandeln.

Deep Learning hat in den letzten Jahren enorme Fortschritte gemacht, insbeson-
dere in Bereichen wie Bilderkennung, Spracherkennung und natiirliche Sprachver-
arbeitung. Dies liegt daran, dass DL-Algorithmen besonders gut darin sind, kom-
plexe Zusammenhénge in Daten zu erfassen, die fiir traditionelle ML-Algorithmen
schwer zu entdecken sind. Denken Sie an die Gesichtserkennung auf Threm Smart-
phone, die automatische Ubersetzung von Texten oder die Fihigkeit von Sprachas-
sistenten wie Siri oder Alexa, Fragen zu beantworten. Diese Anwendungen basieren

in der Regel auf Deep Learning.

Eine ausfiihrliche Referenz fiir Deep Learning ist [29].

3.2 Was bedeutet Lernen?

Im vorherigen Abschnitt haben wir maschinelles Lernen als einen Ansatz der
kiinstlichen Intelligenz beschrieben, der es Maschinen ermoglicht, aus Daten zu
lernen. Was bedeutet Lernen aber in diesem Kontext? Menschen kénnen auf viele
verschiedene Arten lernen. Es ist ein komplexer Prozess mit unterschiedlichen Lern-
stilen, unter anderem durch Kombinationen von Vester’s [26] Lerntypen Horen, Se-
hen, Lesen und Fiihlen/Tasten. Im maschinellen Lernen bezeichnet Lernen jedoch
eine spezifische Methode, um Informationen aus Daten zu extrahieren. In diesem
Abschnitt wollen wir mathematisch beschreiben, was dieses Lernen bedeutet. Da-
zu miissen wir zunéchst kliaren, wie wir Information, beziehungsweise Muster in
Daten, mathematisch formalisieren kénnen. Buckley [10] beschreibt Information

als Beziehung zwischen Datensétzen:
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”Information is [...] a relationship between sets or ensembles of struc-

tured variety.”

Daraus folgt, dass wir Information mathematisch als eine Teilmenge beschreiben
koénnen:

I CExA, (3.1)

wobei E eine Menge von Eingaben und A eine Menge moglicher Ausgaben ist.
Dann bedeutet (x,y) € I, dass die Eingabe x € E und die Ausgabe y € A
in Beziehung zueinander stehen; y ist eine mogliche Ausgabe fiir x. Beispielsweise
konnte x ein Bild einer Katze darstellen, wihrend y das Wort " Katze” selbst ist. In
diesem Beispiel bedeutet (z,y) € I, dass x tatséchlich ein Bild mit Beschreibung y
ist. Wenn ¢’ hingegen das Wort "Hund’ ist, dann gilt (z,y’) € I. Andere Beispiele
sind Sensordaten (£) und zugehorige Zusténde (A) oder Text (F) und zugehorige
Kategorien (A). Das Ziel des maschinellen Lernens ist es, eine mathematische oder

statistische Beschreibung von I zu finden.

3.2.1 Modelle

Der folgende Abschnitt basiert lose auf [9] und [11].

Wir wollen nun mathematische Modelle entwickeln, um die Menge I in (3.1)
beschreiben zu koénnen. Wir werden dazu zwei Ansédtze kennen lernen: das deter-
ministische Modell und das statistische Modell. Dazu werden wir im Folgenden

annehmen, dass

E=R% und A=R"

Das heifit, die Eingabedaten sind durch d reelle Zahlen und die Ausgabedaten
durch n reelle Zahlen bestimmt. Die Ein- und Ausgabedaten liegen somit in digi-
talisierter Form vor. Dies bedeutet, dass wir Daten, wie beispielsweise Bilder oder
Temperaturen, in Zahlen umwandeln, die ein Computer verarbeiten kann.

Das deterministische Modell beschreibt die Menge I als den Graphen einer Ab-
bildung f : RY — R"; d.h. I = {(z,y) | y = f(x)}. Gesucht wird dann die
Abbildung f. Da die Menge aller Abbildungen jedoch zu grof ist, um damit effek-
tiv zu rechnen, schrankt man sich bei der Modellwahl auf Abbildungen fy ein, die

von endlich vielen Parametern ¢ abhéngen.
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Beispiel 3.2.1. Sei d =n =1 und fy(x) = ax+b. Dies ist das sogenannte lineare
Modell. fp hingt von den zwei Parametern § = (a,b) ab. Hierbei sind a und b
reelle Zahlen, die das Verhalten der Funktion bestimmen. Durch Anpassung dieser

Parameter konnen wir die Funktion an unsere Daten anpassen.

Das deterministische Modell beschreibt eine feste Beziehung zwischen Ein- und
Ausgabe. Das statistische Modell hingegen beschreibt den Zusammenhang zwi-
schen Ein- und Ausgabe mittels Zufallsvariablen X € R? und Y € R” und einer
Wahrscheinlichkeitsfunktion oder —dichte Py(y | z) fiir die Zufallsvariable Y gege-
ben X = x (siche Definition 2.5.2). Die Dichte soll wieder von endlich vielen Para-
metern 6§ abhéngen. Sie beschreibt, wie wahrscheinlich eine bestimmte Ausgabe y
ist, wenn die Eingabe z gegeben ist. In diesem Fall wére I = {(z,y) | Py(y | =) > 0}

die Menge aller Paare, die eine positive Dichte aufweisen.

1 2
Beispiel 3.2.2. (1) Seid=n=1und P(y | z) = X/Qi?e_ﬁ(y_"”) . Dann ist y

eine normalverteilte Zufallsvariable mit Mittelwert x (sieche Abschnitt 2.4).

Der Parameter ist hier die Varianz 6 = o2. Diese Verteilung beschreibt, dass
die Ausgabe y wahrscheinlich in der Nihe des Wertes x liegt, wobei o2 die
Streuung der Werte angibt.

(2) Seid = 3,n = 1. D.h., * = (21,29,23) € R3y € R. Wir nehmen an,
dass y nur 3 Zustéande annehmen kann, etwa y € {1,2,3}. Dies ist der Fall in
Kategorisierungsproblemen, wenn wir dem Inputdatum x eine Kategorie y
zuordnen wollen. Pp(i | ) = exp(x;)/(exp(z1) + exp(xa) + exp(z3)) ist ein
Beispiel fiir eine Wahrscheinlichkeitsverteilung auf {1, 2, 3}. Die Wahrschein-
lichkeit Py(i | x) wird auch SoftMax genannt; sieche Definition ?7. SoftMax
wird insbesondere im Kapitel iber Large Language Models (Kapitel 4) eine

zentrale Rolle spielen.
Wir fassen zusammen.

Definition 3.2.1. Sei R? die Menge der Eingaben und R" die Menge der Ausga-

ben. Die Anzahl der Parameter sei p.

(1) Ein deterministisches Modell ist eine Funktion fy : R — R", die von Para-
metern 6 € RP abhéngt.

(2) Ein statistisches Modell ist eine Wahrscheinlichkeitsverteilung fiir Y~ gegeben
X = z mit Verteilung Py(y | =), die von Parametern § € R? abhéngt.
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3.2.2 Training

Wir nehmen nun an, dass wir ein Modell (Definition 3.2.1) mit Parametern 6 € R?

ausgewahlt haben und dass wir N Datenpaare

D= {(v1,11),--.,(xx,yn)} C R x R"

gegeben haben. Die einzelnen Eintrige der Daten bezeichnen wir in diesem Ab-

(

schnitt mit xgj ) baw. yij ); d.h., xz(j ) ist der j Eintrag von x; und genauso fiir y;.

Beispiel 3.2.3. Stellen wir uns folgende N = 4 Daten (z,y) € R3 x R vor:

(M = Abschluss | ® = Wohnort | ® = Alter | y = Jahreseinkommen
MSc Osnabriick 36 60.145
PhD Osnabriick 24 72.541
BSc Hannover 31 58.901
MSc Bremen 29 61.005

Diese Daten sind noch nicht digitalisiert. Wir kénnen sie z.B. digitalisieren,
indem wir dem Abschluss einen numerischen Wert zuordnen (Bsc = 1, Msc = 2,
PhD = 3) und die Stadt durch ihre geographischen Koordinaten (Breiten- und

Langengrad) ersetzen.

Im Kontext des maschinellen Lernens bezeichnen wir:
e 1; als Eingabedaten oder Attribute.
e y; als Labels, Ausgabevariablen oder Responsevariablen.

Variablen, die jeden Wert innerhalb eines Bereichs annehmen kénnen, werden kon-
tinuierliche Variablen genannt. Variablen, die nur bestimmte Werte annehmen

konnen, werden diskrete Variablen oder kategorische Variablen genannt.

Training bezeichnet den Prozess, mit Hilfe der Daten einen Parameter 6 zu fin-
den, so dass das resultierende Modell die Daten gut beschreibt. Diesen Prozess
nennt man das Lernen des Parameters . Damit haben wir die Frage zu Beginn
dieses Abschnitts beantwortet: Im maschinellen Lernen bedeutet Lernen das Fin-

den eines Parameters anhand von Daten.
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Um einen Parameter zu finden, der die Muster in den Daten gut beschreibt,
miissen wir definieren, was "gut” in diesem Fall bedeutet. Angenommen wir ha-
ben uns fiir ein deterministisches Modell fy entschieden. Im optimalen Fall haben
wir dann einen Parameter gefunden, so dass f(x) = y fiir alle neuen Daten-
punkte (z,y). In der Praxis sind Daten oft ungenau oder verrauscht. Daher ist
es unrealistisch zu erwarten, dass f(x) genau y ergibt. Stattdessen verwenden wir
Annédherungen, um flexibler zu sein. Was "nahe an” genau bedeutet, hingt vom

Problem ab und wird iiblicherweise mithilfe einer Verlustfunktion
(:R"xR" =R

gemessen. Dabei misst /(y, y) den Fehler zwischen einem tatséchlichen Wert y und
der Vorhersage ¢, die unser Modell fiir y nach Eingabe von = getroffen hat. Eine
tibliche Wahl ist z.B. die Norm ¢(y,9) = ||y — 9|| (siehe Definition 2.6.1) oder die

quadrierte Norm

Uy, ) = lly — 911"
Je kleiner der Wert der Verlustfunktion, desto besser passt das Modell zu den
Daten.

Im vorherigen Abschnitt haben wir nun zum ersten mal einen wichtigen konzep-

tuellen Schritt gemacht:

Wir interpretieren Datenpunkte als Vektoren im R™ und somit als geo-
metrische Objekte! Dies erdffnet uns die Moglichkeit, Daten mittels
geometrischer Methoden zu manipulieren und somit Informationen aus

ihnen zu erhalten.

Idealerweise wéahlen wir ein Modell und lernen einen Parameter, der auch fiir
unbekannte Daten gute Vorhersagen liefert; d.h., dass fiir jeden neuen Daten-
punkt (z,y) und Vorhersage y fiir y der Verlust £(y,7) klein ist. Deshalb teilen
wir die Daten in Trainingsdaten und Testdaten auf. Die Trainingsdaten verwen-
den wir, um den Parameter zu lernen, und die Testdaten, um zu priifen, wie gut
unser Modell auf unbekannten Daten funktioniert. Um die Daten in Trainings- und
Testdaten aufzuteilen, konnen wir jedem Datenpunkt zufillig ein Label zuweisen.
Ublicherweise verwenden wir zwischen 50% und 90% der Daten fiir das Training.
Die zufillige Aufteilung in Trainings- und Testdaten sollte unabhéngig von der

Modellauswahl sein.
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Nachdem wir ein Modell ausgewiahlt und die Daten vorbereitet haben, lernen
wir die Parameter. Beim deterministischen Modell verwenden wir die Empirische
Risikominimierung (ERM). Das bedeutet, wir suchen einen Parameter 6%, der das

empirische Risiko
N
1
R(0) := ~ ;K(yi, folz:).

minimiert. Man beachte, dass das empirische Risiko der Mittelwert (Definition 2.2.5)

der einzelnen Verluste ist.

Beim statistischen Modell kénnen wir Maximum-Likelihood-Schétzung (MLE)

verwenden. Dies entspricht der Maximierung der Likelihood-Funktion

N

L(O) =[] Polwi | ) (3.2)

=1

Die Motivation fiir die Likelihood-Funktion ist die Annahme, dass die Datenpunkte
(x;, ;) (stochastisch) unabhéngig (Definition 2.5.6) gezogen werden. Dann ist L(#)
die Dichte der multivariablen Zufallsvariable (yi|z1, ..., yn|2zy). Alternativ kénnen

wir auch die (negative und mit + skalierte) Log-Likelihood-Funktion

1) := —%Zlogpg(yi | ;) (3.3)

minimieren, was einfacher ist, da Summen einfacher abzuleiten sind als Produkte.

Zusammenfassend besteht das Training im maschinellen Lernen also aus drei
Schritten:

(1) Daten in Trainings- und Testdaten aufteilen

(2) Parameter lernen

(3) Validierung,.
Hierbei bedeutet Validierung, dass wir iiberpriifen, wie gut unser Modell auf den
Testdaten funktioniert. Dabei wird iiblicherweise das empirische Risiko ausgewer-
tet und gepriift, ob das Risiko der Trainingsdaten ungefihr dem Risiko der Test-
daten entspricht. Wenn die Qualitat des Modells auf den Trainingsdaten besser

ist als auf den Testdaten, spricht man von Uberanpassung (oder Overfitting). Das
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bedeutet, dass das Modell die Trainingsdaten sehr gut gelernt hat, aber nicht in

der Lage ist, allgemeine Vorhersagen zu treffen.

Der Ansatz, den wir in diesem Abschnitt diskutiert haben, versucht, einen be-
stimmten Parameter 6 zu bestimmen. Ein anderer Ansatz ist es, 6 selbst als Zufalls-
variable zu interpretieren, so dass unser Modell Fluktuationen in # beriicksichtigt.
Beispielsweise konnte 6 einer Wahrscheinlichkeitsverteilung folgen, die einen Mit-
telwert hat, den wir bereits beobachtet haben. Die Wahrscheinlichkeitsverteilung
fiir @ nennt man Prior-Verteilung. Die Responsevariable hat dementsprechend eine
bedingte Verteilung (y | x,6). Der Satz von Bayes’ erlaubt es uns dann, die Ver-
teilung von € bei Erhalt neuer Daten zu aktualisieren. Dieser Ansatz wird daher

unter dem Namen Bayesian machine learning zusammengefasst.

3.2.3 Lernparadigmen

Das im vorherigen Abschnitt vorgestellte Konzept nennt man auch dberwachtes
Lernen, weil jeder Datenpunkt x; mit einem Label y; versehen ist. Das Wort
7{iberwacht” bedeutet in diesem Fall so viel wie, dass eine externe Quelle (wie z.B.
der/die Datenwissenschaftler:in) fiir Richtigkeit der Zugehorigkeit von z; und y;
zustandig ist, sie also tuberwacht. Dabei unterscheidet man oft zwei Haupttypen

beim tiberwachten Lernen:

e Regression: Das Label hat einen kontinuierlichen Wertebereich (z.B. Tempe-

ratur).

e Klassifikation: Das Label ist eine Kategorie (z.B. Katze/Hund).

Beispiel 3.2.4. Ein Beispiel fiir ein Klassifikationsproblem ist Beispiel 2.1.3: Ge-
geben ein Bild, welches Fashion-Item ist darauf zu sehen?

Angenommen wir haben ein Klassifikationsproblem und & Klassen {1,..., k}.
Dann kénnen wir die i-te Klasse, mit dem ¢-ten Basisvektor e; identifizieren; d.h.,
e; = (0,...,0,1,0,...,0) € R¥ und 1 steht an der i-ten Stelle. Sei nun Pj ein
statistisches Modell, (z,y) ein Datenpunkt und § € R* der Vektor dessen i-ter
Eintrag 9% gleich Py(y = e; | x) ist. Der Vektor § gibt also die Wahrscheinlich-
keitsverteilung der k Klassen gegeben x an. Dann gilt log g = Zle y® log 9@,
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da ja y = e; nur einen Eintrag hat, der nicht Null ist, namlich y®. Wir setzen nun
in die Log-Likelihood Funktion (3.3) ein und erhalten

N

1
2 Ui di),  wobei ((y, ) = Zy)logy
1:1

Wir geben der Verlustfunktion in dieser Gleichung einen Namen.

Definition 3.2.2. Es seien y,§ € R* Vektoren, deren Eintrige die Wahrschein-

lichkeiten von k Klassen angeben. Die Verlustfunktion

k
— Z y @ log 4
i=1

heilt Cross-Entropy.

Die Definition der Cross-Entropy hat folgenden Hintergrund. Wir betrachten
eine Zufallsvariable Y auf den k Klassen mit der von unserem Modell berechneten
Wahrscheinlichkeitsverteilung § € R*. In der Informationstheorie wird die Un-
sicherheit des Ereignisses Y = ¢ wird mit log(1/(§®)) = —log(5®) modelliert.
Das bedeutet, dass je geringer die Wahrscheinlichkeit §® fiir das Ereignis Y =i
ist, desto mehr Unsicherheit enthéalt es! Wenn der i-te Eintrag von g grof ist, ist
die Unsicherheit klein, weil wir bereits relativ viel dariiber wissen, was passieren
wird, da die Eintrittswahrscheinlichkeit ja grofist. Umgekehrt, wenn ein Ereignis
mit einer niedrigen Wahrscheinlichkeit eintritt, kénnen wir es nur selten beobach-
ten und erhalten daher viel mehr Information, wenn es tatsédchlich passiert. Ist
nun y die echte Verteilung, die von ¢ approximiert wird, so ist die Cross-Entropy
0y, 9) = S8 y@ (= log ™) der Erwartungswert (Definition 2.4.5) der Unsicher-
heit von . Minimierung der Cross-Entropy bedeutet also, die Unsicherheit unseres
Modells zu minimieren. In der Informationstheorie wird das Fachwort Entropie fiir

Unsicherheit verwendet.

Im Unterschied zum iiberwachten Lernen gibt es auch das uniiberwachte Lernen.
In diesem Fall haben wir nur die Eingabedaten z1,...,zy € R%, aber nicht die
Labels y, ..., yny € R™ zur Verfiigung, bzw. es ist uns nicht moglich die Labels in

angemessener Zeit zu generieren.
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Beispiel 3.2.5. Als Beispiel kann man sich einen grofien Textdatensatz vorstel-
len, beispielsweise sdmtliche YouTube Kommentare. Es ist unmoglich in einer
iiberwachten Art und Weise allen Kommentaren das Label ”Like” oder ” Dislike”

zuzufiigen, da es einfach zu viele dieser Kommentare gibt.

Das Ziel beim uniiberwachten Lernen es daher, Muster und Strukturen in den
(Eingabe-)Daten ohhne Zugriff auf die Labels zu finden. In obigen Beispiel kénnte
ein uniiberwachter Lernalgorithmus selbststédndig anhand der Daten Klassen von

YouTube-Kommentaren generieren.
Einige gingige Techniken sind:

e Clustering: Gruppierung dhnlicher Datenpunkte (z.B. YouTube-Kommentare

klassifizieren).

e Dimensionsreduktion: Reduzierung der Anzahl der Variablen, ohne wichtige

Informationen zu verlieren (z.B. Visualisierung hochdimensionaler Daten).

e Assoziationsanalyse: Finden von Beziehungen zwischen Variablen (z.B. Kun-
den, die A kaufen, kaufen auch B).

Zuletzt gibt es noch das Konzept des verstirkenden Lernen Beim verstdarkenden
Lernen lernt ein Agent, eine optimale Strategie zu entwickeln, um eine bestimmte
Aufgabe zu erfiillen, indem er in einer Umgebung interagiert und dabei lernt (d.h.
eine Qualitatsfunktion optimiert). Der Agent lernt durch Versuch und Irrtum. Er
probiert verschiedene Aktionen aus und beobachtet die Resultate. Dadurch lernt

er im Laufe der Zeit eine optimale Strategie.

Beispiel 3.2.6. Ein klassisches Beispiel ist das Training eines Roboters, der ein
Labyrinth navigieren soll. Eine Qualitédtsfunktion belohnt direktere Wege und be-
straft Fehler wie z.B. gegen die Wand fahren. Der Roboter probiert verschiedene

Strategien und optimiert dadurch die Qualitétsfunktion und somit sein Verhalten.

Die hier diskutierte Einordnung verschiedener Lernparadigmen ist aber letztend-
lich nur eine Orientierung. In der Praxis verschwimmen oft die Grenzen zwischen
den drei Paradigmen, oder sie werden miteinander verschaltet. Manchmal ist auch

vom semi-tiberwachten Lernen oder selbst-tiberwachten Lernen die Rede.
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3.2.4 Ubungsaufgaben

Aufgabe 3.2.1. Gegeben seien Eingabedaten x1, x5, 23 € R mit Ausgabedaten
Y1, Y2, ¥3 € R

(x17y1) = (172)’ (any2) = (270)7 (:E3ay3) - (07 %)

(1) Beschreiben Sie das lineare Modell fp : R — R.

(2) Wieviele Parameter werden fiir das lineare Modell benétigt? Begriinden Sie
Thre Antwort.

(3) Beschreiben Sie im linearen Modell das empirische Risiko R(#) der Daten,
wenn wir als Verlustfunktion den quadratischen Abstand ((y, ) = (y — §)?

wahlen.

Aufgabe 3.2.2. Gegeben seien Eingabedaten xq, 9, x3 € R mit Ausgabedaten
Y1, Y2, Y3 € R*:

Ty = 1791 = (%7 %)7 To = 2792 = (4117 %)7 T3 = 0793 = (%7 %)

B Hlx + 02
f@(l‘) N (03$ + 04) ’

(1) Was sind die Parameter in diesem Modell? Begriinden Sie Thre Antwort.

und das Modell

(2) Beschreiben Sie das empirische Risiko R(6) der Daten, wenn wir als Verlust-

funktion den quadratischen Abstand £(y, ) = ||y — ¢||* wiihlen.

(3) Beschreiben Sie das empirische Risiko R(6) der Daten, wenn wir als Verlust-

funktion Cross-Entropy

Uy, 9) =y - log g +y* - log g,

wobei y = (y, y@) und § = (Y, @), wihlen.

(4) Wie klein kann das empirische Risiko in (3) werden? Begriinden Sie Ihre

Antwort.
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Aufgabe 3.2.3. Gegeben seien Eingabedaten zq,...,z4 € R?® mit Ausgaben
Y, Yz €R:

551:(172’4)7%:27 1'2:(07171)792: )
T3 = (_27 170)7y3 =

(1) Beschreiben Sie das lineare Modell f, : R® — R.

(2) Wieviele Parameter werden fiir das lineare Modell benotigt? Begriinden Sie
Ihre Antwort.

(3) Beschreiben Sie im linearen Modell das empirische Risiko R(#) der Daten,
wenn wir als Verlustfunktion den quadratischen Abstand £(y,4) = (y — 4)?

wahlen.

Aufgabe 3.2.4. Es sei wieder f : R — R, fy(x) = az + b,0 = (a,b), das (de-
terministische) lineare Modell. Wir definieren ein statistisches Modell, indem wir

o2 > 0 wihlen und

Yy~ N(fe(x)702>

setzen. y gegeben x ist also eine normalverteilte Zufallsvariable mit Erwartungs-
wert fo(r) und Varianz o?; y streut also zufillig um den Mittelpunkt fy(z). Die
Wahrscheinlichkeitsdichte von y | x ist dann

1
Pyly | x) = o ez (= fo(@)?

vV 2mo?

Gegeben seien wieder die Daten (z1,y1), (22, v2), (z3,y3) aus Aufgabe 1.

(1) Berechnen Sie die Likelihood-Funktion
L(a,b) = L(0) = Fo(yr | 1) - Fo(ya | 23) - Polys | x3).

(2) Berechnen Sie die Log-Likelihood-Funktion [(a, b) = log L(a, b).

(3) Finden Sie einen optimalen Parameter 6, indem Sie die partiellen Ableitungen
gleich Null setzen: 21(a,b) = 21(a,b) = 0, und dann nach a und b auflésen.

Vergleichen Sie mit Aufgabe 1.
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Aufgabe 3.2.5. Essei fy : R = R, fp(z) = ax + b,0 = (a,b), das (deterministi-

sche) lineare Modell. Gegeben seien die drei Datenpunkte

(xlvyl) = (O’ 0)7 (x2>y2) = (17 1)7 ($3,y3) = (_1’2)'

Als Verlustfunktion haben wir wieder den quadratischen Abstand £(y, ) = (y—9)%.

(1) Berechnen Sie das empirische Risiko R(#) = R(a,b) bzgl. der Daten.

(2) Finden Sie einen optimalen Parameter 6, indem Sie die partiellen Ableitungen

gleich Null setzen: %R(a, b) = %R(a, b) = 0, und dann nach a und b auflosen.
Wir wollen nun im Rest der Aufgabe geometrisch beschreiben, was in (b) passiert.
(3) Zeigen Sie, dass
R(a,b) = 3 X6~ |,

wobei || - || die Norm von Vektoren aus Definition 2.6.1 ist und

rp 1 Y1 "

X=|z 1| R y=|y | cR? 0:<>6R2.
T3 1 Y3

(X heifit in diesem Kontext Datenmatriz).

(4) Beachte, dass X € R3 ein Punkt im drei-dimensionalen ist. Was ist die
Menge aller dieser Punkte

H={X0|0cR*}CR®

fiir ein geometrisches Objekt? Zeichnen Sie es im Raum. Zeichnen Sie auch

Y ein.

(5) Uberlegen Sie, dass R(a,b) minimiert wird, wenn der Abstand von y zu H

minimal wird.

(6) Berechnen Sie den Punkt p € H, der am néchsten an y liegt, der also den
Abstand ||p — y|| minimiert. (Hinweis: Lot fillen!)

(7) Losen Sie das Gleichungssystem X6 = p und vergleichen Sie mit (b).

(8) Was passiert, wenn wir N > 4 Datenpunkte haben?
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Aufgabe 3.2.6. Laden Sie das dritte Jupyter-Notebook herunter und fiithren es

aus.

(1) Ersetzen Sie den cars Datensatz, durch den GAGurine Datensatz:

data_GAG = dataset ("MASS", "GAGUrine");

(2) Lesen Sie die Dokumentation, um zu verstehen, was die zwei Merkmale Age

und GAG im Datensatz bedeuten.

Es seien nun (x1, 1), ..., (zx,yy) die Datenpunkte, wobei x Age angibt und y GAG
angibt.

(3) Wie gut beschreiben die drei Modelle im Notebook die Daten?

(4) Entwickeln Sie ein neues Modell, das die Daten besser beschreiben kann. Es
ist dazu hilfreich, die Daten zu visualisieren, um zu schauen, welcher Funkti-
onsgraph passen kénnte. Visualieren Sie auch den transformierten Datensatz,

den wir erhalten, wenn wir die y; logarithmieren: {(x;,log(y;)) |1 <i < N}.

3.3 Neuronale Netze

Eines der wichtigsten, wenn nicht das wichtigste Modell im maschinellen Lernen ist
das kiinstliche neuronale Netz. Im Abschnitt 3.2.1 haben wir ein mathematisches
Konzept fiir Modelle entwickelt und neuronale Netze sind ein Spezialfall davon.
Kiinstliche neuronale Netze sind der Funktionsweise biologischer Gehirne nach-
empfunden. Daher ist es sinnvoll sich kurz mit der Biologie neuronaler Aktivitét

zu befassen, bevor wir neuronale Netze mathematisch beschreiben werden.

3.3.1 Wie funktionieren biologische Neuronen?

Ein menschliches Gehirn umfasst schiatzungsweise 10 bis 100 Milliarden Nerven-
zellen, auch Neuronen genannt. Diese Anzahl an Einheiten bildet die Grundlage
fiir die Komplexitiat unseres Denkens und Handelns. Jedes dieser Neuronen ist ein
hochspezialisierter Zelltyp, der in der Lage ist, Informationen zu empfangen, zu

verarbeiten und weiterzuleiten.
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Ein Neuron besteht im Wesentlichen aus drei Hauptteilen: einem Zellkorper,
einem Axon und den Dendriten. Der Zellkérper kann vereinfacht als eine Art ” Ak-
kumulator” betrachtet werden, der elektrische Spannungen speichert. Diese Span-
nung wird durch eingehende Impulse anderer Neuronen aufgeladen. Dabei werden
diese Impulse iiber die Dendriten empfagen. Je mehr Impulse ankommen, desto
hoher wird die Spannung im Zellkorper. Uberschreitet die Spannung einen be-
stimmten Schwellenwert, wird ein elektrisches Signal ausgelost und iiber das Axon
weitergeleitet. Die Verbindung zwischen dem Axon eines Neurons und dem Dendri-
ten eines anderen Neurons wird als Synapse bezeichnet. Neuronen kommunizieren
also nicht direkt miteinander, sondern iiber diese spezialisierten Kontaktstellen.

Wir kénnen dies abstrakt visuell wie folgt darstellen:

O—0

Die beiden Kreise stellen die Neuronen dar, und der Pfeil symbolisiert die Richtung

der Informationsiibertragung von einem Neuron zum anderen.

Synapsen bestehen aus einem kleinen Spalt, der von Neurotransmittern gefiillt
ist. Neurotransmitter sind chemische Botenstoffe, die das Signal von einem Neu-
ron zum néchsten iibertragen. Die Stérke einer Synapse — ihre Leitfidhigkeit oder
Wirksamkeit — ist nicht konstant, sondern dynamisch und veréndert sich abhéngig
von der Aktivitat. Wird eine Synapse haufig genutzt, indem regelméflig Signale
iibertragen werden, wird sie gestédrkt. Umgekehrt schwicht sich eine Synapse ab,
wenn sie wenig bis gar nicht genutzt wird. Diese Verédnderung der synaptischen
Stérke ist die biologische Grundlage fiir Lernen und Gedéachtnisbildung. Durch die
Verstarkung bestimmter synaptischer Verbindungen und die Abschwéchung ande-

rer kann das Gehirn seine Struktur und Funktion an neue Erfahrungen anpassen.

3.3.2 Das McCulloch-Pitts Neuron

Die Idee, dass Nervenzellen fiir Wahrnehmung, Denken und Lernen verantwortlich
sind, setzte sich Anfang des 20. Jahrhunderts durch und fiihrte 1943 zu ersten ma-
thematischen Modellen des Neurons durch McCulloch und Pitts [18]. Ein Neuron
wird dabei durch zwei reelle Werte y und b dargestellt; y gibt die elektrische Span-

nung und b den Schwellenwert an, ab dem das Neuron aktiv wird. Ein einfaches
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Netzwerk mit drei Neuronen, von denen zwei Information zum Dritten leiten, stellt

sich visuell wie folgt dar.

Hierbei bezeichnen z; und x5 die Spannungen der Neuronen auf der linken Seite
und w; und wy bezeichnet die Stérke der neuronalen Verbindungen. Das Signal,
welches zum Neuron auf der rechten Seite geleitet wird ist dann wyx, + woxs. Das
Neuron auf der rechten Seite wird jedoch nur aktiviert, wenn ein Schwellenwert b

tiberschritten wird. Im McCulloch-Pitts Neuron stellt sich dies dann wie folgt dar:

] aktiv, falls wyzq + wexs — b >0
Y 1st .
inaktiv, falls wizq + woxs — b <0

Wir konnen dies in kompakter Art und Weise mit Hilfe einer sogenannten Akti-

vierungsfunktion o darstellen:
y = o(wixy + wory — b).
Z.B. ist die ReLLU (Rectified Linear Unit) Aktivierungsfunktion gegeben durch
o(z) = max{0, z}.

Hierbei bedeutet y = 0 eben, dass das Neuron auf der rechten Seite inaktiv bleibt.

Insgesamt erhalten wir ein Modell
fg : Rz — R, (l’l,ZEQ) =Y

mit Parametern 6 = (wq, ws, b).

Wir diskutieren weitere Wahlen von Aktivierungsfunktionen in Abschnitt 3.3.4.
Fiir den Moment bleiben wir bei der ReLLU Aktivierungsfunktion. Mit dieser Wahl
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ist das McCulloch-Pitts Neuron bereits relativ ausdrucksstark, wie das folgende

Beispiel zeigt.

Beispiel 3.3.1. Wir verwenden das McCulloch-Pitts Neuron zur Klassifizierung
von Daten in R?. Dabei klassifizieren wir Daten anhand der Zugehéorigkeit zu einer

der zwei Gruppen

Gruppe 1 = {(z1,23) € R* | fy(x1,22) > 0},
Gruppe 2 = {(x1,22) € R? | fo(z1,29) = 0}.

Angenommen haben die vier Datenpunkte D = {(0,0), (1,0), (0,1), (1,1)} C R2
Wir wollen die Punkte (0, 0), (1,0) und (0, 1) der Gruppe 1 (orange) und den Punkt
(1,1) der Gruppe 2 (lila) zuordnen:

X2

Wir kénnen dies mit dem McCulloch-Pitts Neuron mit Parametern 6 = (2,2, 3)

erreichen. Dann ist
fo(z1,20) = 0(2- 21 + 2+ 29 — 3) = max{0, 2(x; + z2) — 3}.

Also f4(0,0) = =3, fo(1,0) = fy(0,1) = —1 und fp(1,1) = 1.

Hier ist eine wichtige Beobachtung: Wir kénnen einen Parameter 6 finden, der
(0,0), (1,0) und (0, 1) einer Gruppe und den Punkt (1, 1) einer anderen Gruppe
zuordnet, weil sich die Punkte (0,0), (1,0) und (0, 1) durch eine Gerade von dem
Punkt (1,1) trennen lassen. Die Entscheidungsgrenze ist der Ort, an dem sich
die zwei Gruppen treffen, also dort, wo x; + x5 = % gilt. Dies ist die Gleichung
einer Gerade. Daher kann das McCulloch-Pitts Neuron nur Daten klassifizieren,
die durch eine Gerade trennbar sind. Z.B. ldsst sich folgende Klassifizierung eben

nicht durch ein McCulloch-Pitts Neuron realisieren:
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X2

Das Beispiel zeigt, dass die Ausdrucksstirke des McCulloch-Pitts Neurons be-
grenzt ist. Wir konnen nur Daten klassifizieren, die durch eine Gerade trennbar
sind. Dies motiviert die Entwicklung komplexerer Modelle, die in der Lage sind,
auch nicht-linear trennbare Daten zu klassifizieren. Eine Moglichkeit, dies zu errei-
chen, ist die Verwendung von mehrschichtigen neuronalen Netzen, die im Grunde
eine Verschaltung von McCulloch-Pitts Neuronen sind und die im néchsten Ab-

schnitt vorgestellt werden.

3.3.3 Struktur eines kiinstlichen neuronalen Netzes

Ein neuronales Netz ist ein Rechenmodell, das von der Struktur des menschlichen
Gehirns inspiriert ist. Es besteht aus miteinander verschalteten McCulloch-Pitts
Neuronen, die in Schichten organisiert sind. Hier ist ein Beispiel fiir ein einfaches

@;X )

Dabei heifit die linke Schicht Eingabeschicht, die rechte Schicht Ausgabeschicht
und die dazwischen liegenden Schichten versteckte Schichten (hidden layers). Jede

Schicht besteht aus mehreren Neuronen, die miteinander verbunden sind. Wir
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bennen die Neuronen nun um, da wir bei der folgenden Herleitungen unnétige

Fallunterscheidungen vermeiden wollen.

o=

Wie im McCulloch-Pitts Neuron haben die Verbindungen zwischen den Neuro-

nen haben unterschiedliche Stérken, die durch Gewichte dargestellt werden. Au-
Berdem hat jedes Neuron auch einen Bias-Term bél), der den Schwellenwert des
Neurons in der [-ten Schicht angibt. In der obigen Abbildung sind die Gewichte
und Schwellenwerte nicht explizit dargestellt, aber jeder Pfeil erhélt ein Gewicht

und jedes Neuron einen Schwellenwert. Wir nummerieren diese wie folgt:

. w( )ist das Gewicht der Verbindung vom j-ten Neuron der (I—1)-ten Schicht

zum i-ten Neuron der [-ten Schicht.
o bgl) ist der Bias-Term des i-ten Neurons in der [-ten Schicht.

Z.B. ist wéll) das Gewicht von xgo) zu :cél) und wg) das Gewicht von xél) zu x?).

Mit dieser Notation ist das von Neuron x?) empfangene Signal
x?) _ a(wﬁ)xg) 4 w&) L _ b(2))

Allgemein ist das von Neuron ¢ in Schicht [ empfangene Signal

ni—1
(Zw(l) (l 1) il))7 (34)

wobei
n; := Anzahl Neuronen in Schicht /.
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Um die Ubersicht zu bewahren, werden die Gewichte oft in einer sogenannten
Gewichtsmatriz zusammengefasst. Fiir die obige Abbildung sind die Gewichtsma-

trizen
(2) (2)

by (w wh w o8 5 3 @ @ O
w = (1) (1) | W = Woy” Wag | W = <w11 W19 wlg) .
Wyy” Wiy Wag 2 (@
W3y Wszg

Beachte, dass W® e R™*™-1 Nun kommt eine entscheidende Beobachtung. Wir
konnen die Gleichungen (3.4) nun in kompakter Art und Weise mit Hilfe von

Vektoren und Matrizen schreiben. Definieren wir die Vektoren

xgl) bgl)
0 0

0= | [ erm, o0 = " e R™,
20 b

so gilt
20 — 0<W(Z>x<1—1> _ b<l>),

wobei ¢ hier komponentenweise auf den Vektor angewendet wird.

Mit Hilfe der Matrix-Vektor Notation konnen wir nun neuronale Netze mit be-

liebig vielen Schichten beschreiben. Insgesamt erhalten wir das folgende Modell:

Definition 3.3.1. Ein mehrschichtiges kiinstliches neuronales Netz mit L Schich-

ten und Parametern
H = (W(l), b W@ p@ W), b(L)),

wobei
b e R™ und WO € R

ist das Modell

fo :R™ =R, fy(z) = ((co fr)o(oo fr_1)o---o (g0 fi))(x),
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mit
filz) = w0z —p0

firl=1,...,L.

Das Modell in Definition (3.3.1) wird auch als Feedforward-Netzwerk bezeichnet,
weil die Information nur in eine Richtung flieBt, ndmlich von der Eingabeschicht
zur Ausgabeschicht. Es gibt auch sogenannte rekurrente neuronale Netze, bei denen

die Information in beide Richtungen flie3t darf.

3.3.4 Aktivierungsfunktionen

Im vorherigen Abschnitt haben wir die Aktivierungsfunktion ¢ = max{0, z} ver-
wendet. Die Motivation dafiir war die Diskussion iiber die biologische Funktion
echter Neuronen und dass sie erst ab einem gewissen Schwellenwert aktiv werden.
Das mathematische Modell eines neuronalen Netzes in Definition 3.3.1 ist jedoch
derart allgemein, dass wir alternative Aktivierungsfunktion wéahlen kénnen, auch
solche die keinen biologischen Ursprung haben. Dariiberhinaus koénnen wir fiir
verschiedene Schichten auch unterschiedliche Aktivierungsfunktionen wéahlen. Die
Wahl der Aktivierungsfunktionen kann einen grofien Einfluss auf die Leistung des
neuronalen Netzes haben. Im Folgenden listen wir einige gédngige Aktivierungs-

funktionen auf und diskutieren ihre Eigenschaften.

e ReLU (Rectified Linear Unit): Diese Aktivierungsfunktion haben wir bereits

diskutiert. Sie ist (komponentenweise) definiert als
o(z) = max{0, z}.

Sie ist einfach zu berechnen und hat sich in vielen Anwendungen als effektiv

erwiesen.

o Sigmoid-Funktion: Die Sigmoid-Aktivierungsfunktion ist (komponentenwei-

se) definiert als
() =17
o(z) = :
1+e =
Sie bildet alle reellen Zahlen auf den Bereich (0,1) ab und wird héufig in

Ausgabeschichten fiir bindre Klassifikationsprobleme verwendet.
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e Tanh (Hyperbolische Tangens): Die Tangens-Hyperbolicus-Funktion ist (kom-

ponentenweise) definiert als

o(z) = tanh(z) = %.
ef+ e ?

Sie bildet reelle Zahlen auf den Bereich (—1,1) ab und ist wie die Sigmoid-

Funktion glatt und differenzierbar, aber zentriert um 0.

Zuletzt definieren wir die SoftMaz-Funktion.

Definition 3.3.2. Die SoftMax-Aktivierungsfunktion ist die Aktivierungsfunktion

ex/t 2
1 e/t . 29 %
o(z) = SoftMaxy(2) = ———— , wobei z = eR
> i1 e/t
ezk/t 2k

Hierbei ist t eine Konstante, die Temperatur genannt wird. Dies kommt daher,
dass die Eintréige von SoftMax;(z) sich mehr und mehr der Gleichverteilung (siehe
Beispiel 2.3.3) annédhern, je grofler ¢ ist — genau wie sich Molekiile zuféllig bewegen,
wenn die Temperatur steigt. Wenn die Temperatur von uns vorausgesetzt wird oder
wenn sie nicht wichtig fiir die Diskussion ist, schreiben wir SoftMax auch ohne das
Subskript ¢:

SoftMax(z) = SoftMax;(z).

Die SoftMax-Aktivierungsfunktion nimmt einer Sonderrolle unter den vier hier
erwahnten Aktivierungsfunktionen ein. Zunéchst ist sie keine komponentenweise
Aktivierungsfunktion. Die Ausgabe der SoftMax-Funktion ist ein Vektor, dessen
Komponenten alle positiv sind und deren Summe 1 ergibt. D.h. o(z) gibt eine
Wahrscheinlichkeitsverteilung iiber k£ Klassen an. Die Wahl der SoftMax-Funktion
am Ende eines neuronalen Netzes in der Ausgabeschicht definiert somit ein statisti-
sches Modell im Sinne von Definition 3.2.1. Durch das Training der Modellparame-
ter lernt ein neuronales Modell mit SoftMax-Ausgabeschicht, die Wahrscheinlich-
keitsverteilung der Klassen fiir gegebene Eingabedaten zu approximieren. Dabei
sorgt die Exponentialfunktion in der SoftMax-Formel dafiir, dass groflere Eingabe-
werte exponentiell stérker gewichtet werden, was zu einer klareren Unterscheidung

zwischen den Klassen fiihrt.
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3.3.5 Ubungsaufgaben

Aufgabe 3.3.1. Gegeben Sei ein neuronales Netz, beschrieben als Graph wie folgt.
wq @ Uy
4 U\Q‘
@

St

Der Biaswert von z; ist b;, 1 < ¢ < 3, und der Biaswert von y ist by. Im ersten Layer
verwenden wir die nichtlineare Aktivierungsfunktionen o und im Outputlayer die
Aktivierungsfunktionen o,. Ubersetzen Sie den Graphen in ein Modell f5 : R — R,

indem Sie fy(x) angeben.

Aufgabe 3.3.2. Gegeben Sei ein neuronales Netz, beschrieben als Graph wie folgt.

Im ersten Layer verwenden wir die Aktivierungsfunktion o; und im Outputlayer

die Aktivierungsfunktion o,.

(1) Beschriften Sie die Gewichte der Verbindungen und die Bias-Werte der Neu-

ronen mit Threr eigenen Notation.

(2) Ubersetzen Sie den Graph in ein Modell f, : R? — R.

Aufgabe 3.3.3. Gegeben Sei ein neuronales Netz, beschrieben als Graph wie folgt.
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O——0

.
e

O——=0

O

Im ersten Layer verwenden wir die nichtlineare Aktivierungsfunktionen o; und im

Outputlayer die Aktivierungsfunktionen os.

(1) Beschriften Sie die Gewichte der Verbindungen und die Bias-Werte der Neu-

ronen mit Threr eigenen Notation.

(2) Ubersetzen Sie den Graph in ein Modell f, : R? — R.

Aufgabe 3.3.4. Gegeben Sei ein neuronales Netz, beschrieben als Graph wie folgt.

O—0O

N

O——=0

Im ersten Layer verwenden wir die nichtlineare Aktivierungsfunktionen oy und im

Outputlayer die Aktivierungsfunktionen os.

(1) Beschriften Sie die Gewichte der Verbindungen und die Bias-Werte der Neu-

ronen mit Threr eigenen Notation.

(2) Ubersetzen Sie den Graph in ein Modell f, : R? — R.

Aufgabe 3.3.5. Gegeben Sei ein neuronales Netz, beschrieben als Graph wie folgt.
OENoENG

Der Biaswert von z ist by, und der Biaswert von y ist by. Sowohol im ersten Layer als

auch im Outputlayer verwenden wir die Identitdt o(z) = x als Aktivierungsfunk-
tion. Zeigen Sie, dass das neuronale Netz in der Form fp(z) = a -z + b geschrieben

werden kann. Was sind die Parameter 67
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Aufgabe 3.3.6. Seien

b
f1($1,$2) _ <w1,1 w1,2> <x1> _ ( 1) und f2(21,22) _ <u1 u2> <Z1> _p
Wa1 W22 ) by 29

und oy, 05 nichtlineare Aktivierungsfunktionen.

(1) Beschreiben Sie das neuronale Netz (050 fo 0070 f1) : R? — R als Graphen.

(2) Was sind die Parameter? Wieviele Parameter has das neuronale Netz insge-

samt.

Aufgabe 3.3.7. Seien

w1 0 b1
T
filzr,z2) =] 0 wy ( 1> — | by und

w3 W4 b3
21
f2(21,22723):(u1 U2 Us) Z2 | — €,
z3

und oy, 05 nichtlineare Aktivierungsfunktionen.

(1) Beschreiben Sie das neuronale Netz (090 fo 0070 f1) : R? — R als Graphen.

(2) Was sind die Parameter? Wieviele Parameter has das neuronale Netz insge-

samt.

Aufgabe 3.3.8. Es sei fp(21, r2) = max{wz1 +wyzs —b,0} das McCulloch-Pitts

Neuron mit Parametern 6 = (wy, ws, b).

(1) Sei 0 = (1,0,1), also w; = 1, wy = 0 und b = 1. Skizzieren Sie die zwei

Regionen

Ry = {z = (21, 22) € R? | fy(x1,72) =0} und
R, = {$ = (xl,l’g) S R2 | fg(fl)l,xg) > O}—
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3 Grundlagen der Kiinstlichen Intelligenz (KI) und des Maschinellen Lernens (ML)

(2) Beurteilen Sie jeweils fiir die beiden unten skizzierten Datensétze, ob wir
die Parameter 6 = (wy, wsy, b) so setzen kénnen, dass fy die Klassen 0 und 1

trennt. Begriinden Sie Ihre Antwort.

Datensatz 1: Datensatz 2:

© o

@ ©
O @@

Hinweis: Jeder Kreis steht fiir ein Datum. Die Position eines Kreises stellt
den Wert des Inputdatums (z1,z2) € R? dar. Das Label stellt den Wert des
Outputdatums (0 oder 1) dar.

®

Aufgabe 3.3.9. Gehen Sie durch das vierte Jupyter-Notebook. Passen Sie es so

an, dass die Daten im MNIST Datensatz klassifiziert werden.
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4 Large Language Models

Dies Kapitel basiert zu groflen Teilen auf dem umfassenden Lehrbuch von Zhang,
Lipton, Li und Smola [29]. Fiir das Kapitel iiber Large Language Models (LLMs)
wurde auflerdem das Youtube-Tutorial von Andrej Karpathy [14] herangezogen.
Eine weitere hilfreiche Quelle ist die Youtube-Playlist von 3BluelBrown mit dem
Titel “Neural Networks” [6].

Ein Language Model hat das Ziel fiir eine Texteingabe ein neues Stiick Text
zu generieren, das der Eingabe folgenden soll bzw. sie vervollstindigen soll. Z.B.
konnte die Eingabe der Text “Mathematik-Lehrer:innen sind” sein. Dann wére eine
mogliche Vervollstandigung “Mathematik-Lehrer:innen sind super!”. Die Eingabe
wird iiblicherweise Prompt genannt. Ein Language Model lernt aus vorgegebenen

Textdaten, wie Prompts typischerweise fortgesetzt werden.

Von einer mathematischen Sichtweise ist ein Language Model ein statistisches
Modell Py(y | x); siche Definition 3.2.1. Hierbei sind # € E und y € A, wobei E
die Menge aller moglichen (Eingabe-)Prompts und A die Menge aller moglichen
Vervollstandigungen ist, und # bezeichnet wieder die Parameter des Modells. Fiir
einen gegebenen Prompt x berechnet das Modell dann die Wahrscheinlichkeiten fiir
alle moglichen Vervollstdndigungen y. Dies gibt die Wahrscheinlichkeitsverteilung
Py(y | =). AnschlieBend generiert das Language Model eine Vervollstiandigung y
gemaf dieser Verteilung. In obigen Beispiel wire der Eingabeprompt fiir das Modell
xr = “Mathematik-Lehrer:innen sind”. Die Wahrscheinlichkeit von y = “super!”
gegeben x ist grofl genug, so dass, wenn wir die Vervollstdndigung, generieren, wir

mit hoher Wahrscheinlichkeit “super!” erhalten.

Beispiel 4.0.1. Das Uni-Gram Modell ist ein einfaches Sprachmodell, welches
aber sehr hilfreich ist, um die grundlegende Idee hinter Sprachmodellen besser zu
verstehen. Gegeben sei der Input Prompt z = “Mathematik-Lehrer:innen sind”.

Das Uni-Gram Modell ignoriert den Prompt komplett und wéhlt das nachste Wort
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4 Large Language Models

nur anhand der relativen Haufigkeiten des Wortes in den Textdaten. Besteht der
Text z.B. aus m Wortern und sind ng,per davon “super”, so erhalten wir, in An-
lehnung an Definition 2.5.1,

Nsuper
m

Py(“super!” | z) =

Die Parameter 6 dieses Modells sind die Anzahl der Worter im Text.

Zwei Beispiel Texte, die als Trainingsdaten fiir ein Uni-Gram Modell verwendet
werden konnten, sind Werke von Shakespeare [1] bereitgestellt vom Projekt Gu-
tenberg und Transskripte von 393 Spongebob Episoden [2] von Kaggle. Beides sind
englische Texte. Wir visualisieren die (absoluten) Haufigkeiten der Worter (ohne

Sonderzeichen) jeweils in einem Histogramm (siehe Definition 2.1.9).

2.50x10* |

| [ Shakespeare Text |

2.00x10*

1.50x10*

1.00x10* |

5.00x10°

4 [ Spongebob Text
3.0x10°

2.0x10* |

1.0x10* |

86


https://www.projekt-gutenberg.org
https://www.projekt-gutenberg.org
https://www.kaggle.com

4 Large Language Models

Beispiel 4.0.2. Das Bi-Gram Modell (siehe z.B. [29, Abschnitt 9.3.1]) funktioniert
dghnlich wie Uni-Gram in Beispiel 4.0.1, ignoriert aber den Eingabe-Prompt nicht.
Gegeben sei wieder der Input Prompt z = “Mathematik-Lehrer:innen sind”. Das
Bi-Gram Modell beachtet nur das letzte Wort “sind” und ignoriert alles, was davor
kommt. Die Idee von Bi-Gram ist es, zu zédhlen wie oft “sind” und wie oft “sind
super” im Trainingstext vorkommen. Seien dazu ng,q die Anzahl wie oft “sind”
und 7gind super die Anzahl wie oft “sind super” im Trainingstext vorkommen. Dann

erhalten wir, inspiriert von Definition 2.5.1,

Nsind super
Pp(“super!” | z) = 22
Nsind

Die Parameter ¢ dieses Modells sind die Anzahl der Worter und Wortpaare.

Ein Bi-Gram Modell, traininiert auf den Spongebob Daten [2], generiert z.B. fiir
den Input Prompt “Happy” folgenden Output (vgl. Jupyter-Notebook 5):

Happy birthday, SpongeBob!
SpongeBob: Oh, I just a good one, not a place him and the door and.

Dies sieht bereits nach einem sinnvollen Text aus. Bei genaueren Hinschauen sieht

man aber jedoch, dass Grammatik und Kontext nicht beachtet werden.

Es gibt auch das Tri-Gram Modell oder, ganz allgemein, das n-Gram Modell,
welche Wort Triple bzw. Wort n-tuple zdhlen, um Fy(y | ) zu berechnen. Eine
etwas nuanciertere Methode ist Skip-Gram, welches wir in Abschnitt 4.1.1 bespre-

chen.

Das Ziel dieses Kapitels ist es, zu erkldren, wie moderne Large Language Models
(LLM) funktionieren; wie also das statistische Modell Py(y | x) in einem LLM
berechnet wird. Insbesondere Ein schematische Darstellung eines Language Models

ist in Abbildung 4.1 gegeben. Im groben funktioniert es in drei Schritten.

(1) Zunéchst wird der Prompt in eine digitale Représentation umgewandelt. Dies
wird als Einbettung bezeichnet. D.h., wir ordnen dem Prompt = eine Folge
von Vektoren im R™mbed 7y, Die Dimension nNempeq heiit Finbettungsdimen-

ston und ist von Modell zu Modell unterschiedlich.

(2) Anschlieend wird die Einbettung verarbeitet und Py(y | x) berechnet. In
einem Large Language Model (LLM) geschieht diese Verarbeitung durch ein
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Prompt x

|

Einbettung des Textes

|

Verarbeitung und Berechnung von FPy(y | x)

l

Generieren von y

|

Vervollstandigung y

Abbildung 4.1: Schematische Darstellung eines Language Models.

spezielles neuronales Netzwerk, ndmlich aus einem Netzwerk sogenannter
Transformer-Blocke. Wir werden Transformer ausfiihrlich in Abschnitt 4.2
besprechen. Die zentrale Eigenschaft eines Transformers ist es, Kontext ler-
nen zu konnen. Dies ist essentiell fiir das Ziel bedeutungsvollen Text zu ge-

nerieren.

(3) Abschlieend wird die Vervollstindigung aus der Wahrscheinlichkeitsvertei-

lung P(y | z) generiert und ausgegeben.

Insbesondere arbeitet ein LLM, anders als Bi-Gram in Beispiel 4.0.2, mit Ein-
bettungen und nicht direkt mit den Token. Texteinbettungen ermoglichen es geo-
metrische Verfahren zu verwenden, um Information zu verarbeitet. Dadurch kann

das Model komplexere Zusammenhénge lernen.
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4 Large Language Models
4.1 Text-Einbettung und Tokenisierung

Wie wollen wir einen Text-Prompt x in eine digitale Repréisentation umwandeln,
damit ein Computer damit arbeiten kann. Dies geschieht bei LLMs in zwei Schrit-
ten: Zundchst wird der Text in sogenannte Tokens zerlegt. Dies sind Textbau-
steine, die aus einem oder mehreren Zeichen bestehen konnen. Der Prozess der
Zerlegung eines Textes in Tokens wird als Tokenisierung bezeichnet. Die Menge

aller moglichen Tokens wird als Vokabular bezeichnet.

Beispiel 4.1.1. Der Text “Mathematik-Lehrer:innen sind super!” konnte in die

einzelnen Worte und Zeichen als Tokens

14 11 W [13 o 7 w» (A9 2 (124 [13 7 (14 B2
Mathematik”, “-”, “Lehrer:innen”, “”, “sind”, “”, “super”, “!
zerlegt werden. Dies ist z.B. der Ansatz in Beispiel 4.0.2, wo wir Worte und Wort-

paare gezahlt haben. Eine andere Moglichkeit wére

14 77 14 11, W 44 7 W.” (454 7 w»” [ 7 w»” [44 7 44 B2
Mathe”, “matik”, “-”, “Lehrer”, *”, “innen”, “’, “sind”, “”7, “super”, “!”.
Eine weitere Moglichkeit wire, den gesamten Text als ein einziges Token zu be-
trachten, oder jeden einzelnen Buchstaben als separates Token zu betrachten. Es

gibt viele verschiedene Moglichkeiten, einen Text in Tokens zu zerlegen.

Sei wieder E die Menge aller moglichen Text-Prompts. Sei zudem F' die Menge
aller moglichen (endlichen) Tokenfolgen fiir ein gegebenes Vokabular V; d.h., F ist

die Menge von Folgen mit Elementen in V.

Beispiel 4.1.2. Wir betrachten erneut den Text aus Beispiel 4.1.1. Angenommen

die Tokens aus diesem Beispiel sind bereits das ganze Vokabular:

V = {“Mathematik”, “-”, “Lehrer:innen”, “”7, “sind”, “super”, “I”}.
Dann ist z.B. die Tokenfolge (“Mathematik”, “r “!”) € F. Genauso ist die Token-
folge (“Super”, 7 “sind”, “—”) € F. Die Tokenfolgen in F' kénnen unterschiedlich

lang sein und miissen keinen Sinn ergeben.

Hier kommt die zentrale Definition dieses Abschnitts.
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4 Large Language Models

Definition 4.1.1. Sei V Vokabular und F' die Menge aller moglichen Tokenfolgen
fiir V. Wir definieren:

(1) Ein Tokenisierer ist eine Abbildung
T:E—F,

die einem Prompt x in die zugehorige Tokenfolge 7(z) € F' zerlegt.
(2) Sei nempea € N. Eine Einbettung ist eine Abbildung

@ 1V — RMembed,

Sie ordnet jedem Token ¢ € 'V einen Vektor ¢(t) € R'mbed zu. Die Di-
mension Nempea heiflt Finbettungsdimension. Die Einbettung einer Token-
folge (t1,ta,...,tx) € F ist dann definiert als die Folge der zugehorigen
Einbettungs-Vektoren (¢(t1), p(t2), ..., @(tx)).

Beispiel 4.1.3. Wir fahren mit Beispiel 4.1.3 fort. Das Vokabular hat 7 Elemente.
Eine mogliche Einbettung g : V — R7 wiire

o(“Mathematik”) = (1,0,0,0,0,0,0),
e(“")=1(0,1,0,0,0,0,0),
o(“Lehrer:innen”) = (0,0, 1,0, 0,0, 0),
©(“”) =(0,0,0,1,0,0,0),

(“sind”) = (0,0,0,0,1,0,0),
(“super”) = (0,0,0,0,0,1,0),
e(“") =(0,0,0,0,0,0,1).

Diese Art von Einbettung heifit auch One-Hot-Encoding, weil jeder Token durch
einen Vektor dargestellt wird, der in genau einer Komponente den Wert 1 und in

allen anderen Komponenten den Wert 0 hat.

Das Motivation Wort-Einbettungen zu verwenden ist es, geometrische Metho-
den in R"mbed 711 verwenden, um Information aus Texten zu extrahieren. Dazu ist

One-Hot-Encoding nicht gut geeignet, weil alle Token einem Standardbasisvektor
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o(“Physik”)

o(“Mathematik”)

o(“langweilig”)

Abbildung 4.2: Beispiel fiir eine Einbettung in R?. Die Tokens “Physik” und “Mathematik” sind
thematisch dhnlich und werden durch Vektoren dargestellt, die einen kleinen Winkel zueinander
haben. Das Token “langweilig” ist thematisch anders und wird durch einen Vektor dargestellt,
der einen groflen Winkel zu den anderen beiden Vektoren hat.

zugeordnet werden, welche alle den gleichen Abstand und den gleichen Winkel zu-
einander haben. Bessere Einbettungen ordnen Token Vektoren zu, die semantisch
dhnliche Token néher zueinander abbilden. Z.B. kénnten die Tokens “Mathematik”
und “Physik” Vektoren zugeordnet werden, die einen kleinen Winkel zueinander
haben, weil sie thematisch dhnlich sind; siche Abbildung 4.2. Die Idee ist es also,

Information durch Geometrie zu reprisentieren!

Wir wollen im Rest dieses Abschnitts zwei Methoden kennenlernen, um die
Einbettung ¢ : V — R"mbed zy lernen. Die erste Methode basiert auf der soge-
nannten Skip-Gram-Modell, die zweite Methode heifit Continuous-Bag-of-Words.
Beide werden unter dem Namen Word2Vec zusammengefasst und haben zum Ziel
die Einbettung so zu lernen, dass semantisch dhnliche Tokens durch Vektoren dar-

gestellt werden, die nahe beieinander liegen.

Interessanterweise wurde in [19] beobachtet, dass in diesen Modellen sich se-
mantische Beziehungen zwischen Token in algebraischen Relationen zwischen Vek-
torn iibersetzt werden. Sind z.B. UBerin, UDeutschland, UParis UNA Uprankreich die Ein-
bettungen der Tokens “Berlin”, “Deutschland”, “Paris” und “Frankreich”, so gilt

ndherungsweise

VUBerlin — UDeutschland + UFrankreich = UParis-

Dies bedeutet, dass die Beziehung “Hauptstadt von” in der Vektorraum-Einbettung
durch die obige algebraische Relation dargestellt wird. Solche Relationen sind be-

sonders niitzlich fiir viele Anwendungen in der natiirlichen Sprachverarbeitung.

91



4 Large Language Models

Insbesondere bleibt diese Relation unter der Transformation durch lineare Ab-
bildungen (2.4) erhalten. Der Grund ist die Eigenschaft (2.5). D.h. wir kénnen
lineare Abbildungen verwenden, um diese Vektoren zu manipulieren ohne die se-

mantischen Relationen zu verlieren!

4.1.1 Das Skip-Gram Modell

Die Word2Vec-Methode basiert auf der Beobachtung, dass jedes Wort bzw. Token
zwei Rollen in einem Text einnehmen kann: Ess konnen als Wort an sich stehen
oder Information zur Bedeutung anderer Worter liefern. Um dies zu modellieren,

werden zwei Einbettungsfunktionen gelernt:
@V — RMembed  ynd  qp : 'V — RMembed,

Jedem Token t € V werden zwei verschiedene Repréisentationen als Vektoren zuge-
ordnet, eine als Zentrums- Vektor ¢(t) und eine als Kontext- Vektor 1(t). Die erste
Einbettung ¢(t) soll die Rolle von ¢ als Token an sich représentieren, wéhrend v (t)
die Rolle von t als Kontext fiir andere Tokens représentieren soll. Nachdem bei-
de gelernt wurden, wird iiblicherweise ¢ als Einbettung fiir das Language Modell

verwendet.

Im Folgenden nehmen wir an, dass das Vokabular R Tokens enthéilt, die wie

folgt nummeriert sind:

V= {t,....ta} (4.1)

Fiir alle k& bezeichnen wir dann mit vy = ¢(t;) der Zentrums-Vektor und mit
wg, = Y(t) den Kontext-Vektor des Tokens ¢;. Wir konnen die Ziel- und Kontext-

Vektoren in Matrix Form zusammenfassen.

V=1_uv ... vp| €Rremct*Byund W = [w, ... wg| € RrembeaxB (42)

wobei wir die Notation mittels Spaltenvektoren aus (2.2) verwendet haben.

Die Word2Vec-Methode lernt die Einbettungen ¢ und ¢, indem sie die Wahr-

scheinlichkeit modelliert, mit der ein Token ¢; im Kontext eines anderen Tokens ¢;
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auftritt. Diese Wahrscheinlichkeit wird mit Hilfe des Skalarprodukt (v;, w;) (siehe
Definition 2.6.1) der beiden Einbettungen modelliert. Je gréfler (v;, w;) (also je
kleiner der Winkel zwischen v; und w,!), desto wahrscheinlicher soll ¢; im Kontext

von t; auftreten.

Definition 4.1.2. (vgl. [29, Abschnitt 15.1.3].) Seien ¢;,t; € V. Wir definieren die
bedingte Wahrscheinlichkeit, dass das Token t; im Kontext des Tokens ¢; auftritt:

Peskip—gram(tj | tz) _ ;Xp((%,ﬂ)j)) ‘
21 exp((vi, wi))

Die Parameter 0 sind die Matrizen V und W aus (4.2).

Eine wichtige Beobachtung ist es, dass wir P5“P & (¢, | t,) erhalten, wenn wir
die SoftMax-Aktivierungsfunktion (siehe Definition ?7) auf die Skalarprodukte

(v;, wy) fiir alle 1 < k < R anwenden.

Die paarweisen Skalarprodukte lassen sich dann mit Hilfe von (2.3) als Matrix-

Multiplikation schreiben. Wir fassen das als einen Satz zusammen.

Satz 4.1.1. Seien V und W wie in (4.2) definiert. Dann gilt

VIW = ({vi, w;))}?

ij=1-
Demensprechend lisst sich die bedingte Wahrscheinlichkeit in Definition 4.1.2 als

exp (VIW);)
Zgzl exp ((VTW>Z’€)

schreiben; d.h., wir wenden SoftMax auf die Zeilen von VW an.

Peskip—gram(tj | tz) _

Gegeben sei nun eine Folge von Tokens
(817827"‘78k) EF

aus dem Trainings-Text, s; € V = {ty,...,tg} fiir i = 1,..., k. Das Word2Vec-
Modell definiert ein festes Kontextfenster m € N. Innerhalb dieses Kontextfensters
Peskip—gram(

werden alle Wahrscheinlichkeiten s; | s;) fir alle Paare (s;,s;) berech-

net, bei denen s; im Kontextfenster von s; liegt. D.h., es gilt | — j| < m.
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Beispiel 4.1.4. Wir betrachten wieder den Text “Mathematik-Lehrer:innen sind
super!” aus Beispiel 4.1.1 zerlegt in die Tokenfolge

“Mathematik”, “-”7  “Lehrer:innen”, “7, “sind”, 7, “super”, “I”.

Ist nun ein Kontextfenster m = 2 gegeben, dann sind die Tokens im Kontext von
“Lehrer:innen” die Tokens “Mathematik”, “-”, 7 und “sind”, weil diese Abstand
von hochstens m = 2 zum Token “Lehrer:innen” haben. Andererseits ist “super”

nicht im Kontextfenster von “Lehrer:innen”.

Gegeben sei nun ein Kontextfenster m. Wie in (3.2) erhalten wir folgende Likelihood-
Funktion fiir das Skip-Gram Modell.

Definition 4.1.3. Die Likelihood-Funktiondes Skip-Gram Modells ist definiert als

k
Lskipfgram<8) _ H H Pesklp*gram(sj | 51')‘

=1 jili—jl<m
Die Parameter 6 dieses Modells sind die Matrizen V und W aus (4.2).

Fiir das Training des Skip-Gram Modells werden nun zuféllig Tokenfolgen aus
dem Trainings-Text gezogen und die Parameter 6 so optimiert, dass die Likelihood-
Funktion L*kP~&am(9) moglichst gro wird. Das Training von Skip-Gram ist somit
tiberwacht (siehe Abschnitt 3.2.3), weil die Trainingsdaten aus den Paaren (s;, s;)
in Definition 4.1.3. Da das Modell die Paare selbst aus den Texten extrahiert,

spricht man auch von selbst-tiiberwachtem Lernen.

4.1.2 Das Continuous-Bag-of-Words Modell

Das Skip-Gram Modell aus dem vorherigen Abschnitt modelliert die Wahrschein-
lichkeit, mit der ein Token im Kontext eines anderen Tokens auftritt. Das Continuous-
Bag-of-Words Modell (CBOW) verfolgt einen umgekehrten Ansatz. Es modelliert
die Wahrscheinlichkeit, mit der ein Token gegeben einen Kontext auftritt. In An-

lehnung an Definition 4.1.2 erhalten wir die folgende Definition.
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Definition 4.1.4. (vgl. [29, Abschnitt 15.1.4].) Seien t;,¢;,,...,t;,,, € V (die An-
zahl ist 2m, weil wir alle Token neben ¢; innerhalb eines Kontextfensters der Grofie

m verwenden wollen). Sei weiterhin

_ 1
V= %(Ujl + T + Uj2m>

der (eintragsweise) Mittelwert der Ziel-Vektoren v;,. Wir definieren die bedingte
Wahrscheinlichkeit, dass im Kontext der Token t;,...,%;,, das Token ¢; auftritt

j2m
als (7, w)
chow exp((v, w;
Peb (ti’tjp'--?t]ém): R — :
2 k=1 XP((T, wi))
Gegeben sei nun wieder eine Folge von Tokens (si,$s2,...,8;) € F und ein

Kontextfenster m € N. Genau wie in Definiton 4.1.3 erhalten wir die Definition
der Likelihood-Funktion fiir das CBOW Modell.

Definition 4.1.5. Die Likelihood-Funktiondes CBOW Modells ist definiert als
k
LCbOW(Q) = H Pgbow(sz‘ | Sicms -5 Sic1s Sitly s Sitm)-
i=1

Die Parameter 6 dieses Modells sind die Matrizen V und W aus (4.2).

Fiir das Training des CBOW Modells werden wie fiir das Skip-Gram Modell
zufillig Tokenfolgen aus dem Trainings-Text gezogen und darauthin die Likelihood-
Funktion L°Y(6) oder die Log-Likelihood-Funktion (*°¥(6) = log L"°% () opti-
miert. Das Training von CBOW ist somit genau wie das Training fiir Skip-Gram

uberwacht bzw. selbst-iiberwacht.

Es gibt weitere Modelle zur Text-Einbettung, wie z.B. GloVe. GloVe verwendet
zusétzlich zu einem Kontextfenster auch die globale Haufigkeit von Token-Paaren
im Text, um die Einbettung zu lernen. Dies stellt eine signifikante Verbesserung
des Ansatzes zum Lernen von Texteinbettungen dar, da sowohl Skip-Gram als auch

CBOW nur lokale kontextuale Informationen verarbeiten konnen. Wir verweisen
hier auf [29, Abschnitt 15.5.1] fiir weitere Details.
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4.1.3 Ubungsaufgaben

Aufgabe 4.1.1. Gegeben sei ein Tokenisierer mit Vokabular V' = {h,a, 1, 0}.
(1) Entscheiden Sie, welche der folgenden Texte durch 7 in Token zerlegt werden
koénnen:
e hallo
e aal
e holla
e laos

(2) Geben Sie fiir alle Texte in (a), wenn moglich, eine Tokenisierung an.

Aufgabe 4.1.2. Gegeben sei ein Tokenisierer mit Vokabular V' = {ab, bc, abc}.

(1) Entscheiden Sie, welche der folgenden Texte durch 7 in Token zerlegt werden
koénnen:
e ababc
e abbc
e abcab
e abababc

(2) Geben Sie fiir alle Texte in (a), wenn moglich, eine Tokenisierung an.

Aufgabe 4.1.3. Wir betrachten zwei einfache Tokenisierungsverfahren:

(1) Wort-Tokenisierer: Dieser Tokenisierer zerlegt einen Text in Worter, die
durch Leerzeichen getrennt sind. Z.B. wird der Text “Ich liebe Mathe” in
die Token Ich, liebe und Mathe zerlegt.

(2) Zeichen-Tokenisierer: Dieser Tokenisierer zerlegt einen Text in einzelne Zei-
chen. Z.B. wird der Text “Ich liebe Mathe” in die Token I, ¢, h, , 1, i, e,
b, e, , M a,t, hund e zerlegt.

Diskutieren Sie mogliche Vor- und Nachteile der beiden Tokenisierungsverfahren.
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Aufgabe 4.1.4. (1) Gegeben sei der Text “Mathe”. Auf wieviele Arten lédsst

sich der Text in Token zerlegen?

(2) Gegeben sei der Text “Osnabriick”. Auf wieviele Arten lasst sich der Text in

Token zerlegen?

(3) Ganz allgemein, auf wieviele Arten lasst sich ein Text, der aus N Buchstaben

und Sonderzeichen besteht, in Token zerlegen?

4.2 Transformer

Text-Einbettungen wie Skip-Gram und CBOW haben einen entscheidenen Nach-
teil: Jedem Token wird ein fester Vektor zugeordnet, unabhéngig davon, in wel-
chem Kontext das Token auftritt. Dies ist problematisch, weil die Bedeutung eines
Tokens stark vom Kontext abhéngen kann. Z.B. hat das Wort “Fliigel” in den
Satzen “Der Vogel hat Fliigel.” und “Ich spiele auf dem Fliigel.” unterschiedliche
Bedeutungen. Der Transformer 16st dieses Problem, indem er Texteinbettungen
kontextabhéngig weiterverarbeitet. Die Einbettung von “Fliigel” wird also fiir die
beiden Beispiel-Satze unteschiedlich behandelt. Dies geschieht durch den sogenann-

ten Attention-Mechanismus [25].

Ganz allgemein ist ein Transformer (manchmal auch: Transformer-Block) ein
Modell der Form

f : Rncmbcdxm N IRncmbchTn7 X — ']C()()7
das eine Eingabe-Matrix X € RMembed*™ auf eine Ausgabe-Matrix
f(X) € Rncmbcdxm

abbildet. Hierbei ist m die Grofle des Kontextfensters, also die maximale Anzahl
an Token, die gleichzeitig verarbeitet werden kann. Der Transformer transformaiert
die Einbettung X eine eine neue Einbettung f(X). Diese neue Einbettung ist dann

mit kontextualer Information versehen.

Formell miissten wir f = fy schreiben, um die Abhéngigkeit von den Modellpara-
metern 6 zu verdeutlichen. Wir verzichten in diesem Abschnitt der Ubersichtlichkeit

halber darauf und diskutieren die Parameter getrennt von der Notation.
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Es gibt natiirlich viele verschiedene Architekturen fiir Transformer. Wir werden

folgende simple Version besprechen:

T = fNN o fattention- (43)

Hierbei ist fyy : R7embed X s R7embed X o mehrschichtiges neuronales Netz wie
in Definition 3.3.1. Der essentielle Teil ist jedoch das Attention-Modell

n, Xm n, Xm
fattention . R embed — R embed .

Wir werden dieses Modell im Folgenden studieren.

4.2.1 Attention

Das Attention-Modell basiert auf der Idee, dass die Eingabedaten X & R"embed>m
drei verschiedene Représentationen haben:

(1) eine Query-Reprisentation ) € R"attenxm

(2) eine Key-Représentation K € Rmatten >

(3) und eine Value-Représentation V' € R embeaxm
Die (Attention-)Dimension n,ge, der Query- und Key-Représentation kann dabei

unterschiedlich zur Einbettungsdimension neypeq S€in.

Die Spalten von @), K und V sind die Query-, Key- und Value-Vektoren der
einzelnen Tokens in der Eingabe-Matrix X . Sie werden jeweils durch ein kiinstliches

neuronales Netz aus X berechnet:

Q= foX), K=[fx(X), V=fr(X),

wobei fQ) fK + [RMembed XM _y RNatten XM 1111 fV - [RMembed XM _y RMembed XM 1pohp-
schichtige neuronale Netze sind. Die Parameter dieser Netze sind Teil der Modell-

parameter 6 des gesamten Transformers.

Die Attention-Matrix, welche aus ), K und V generiert wird, wird nun durch
die folgende Formel definiert (vgl. [25, Gleichung (1)]):

Attention(Q, K, V) = V - SoftMax(K ' Q) € RMembeaxm. (4.4)
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Q = fo(X)

_— T

Eingabe X —— | K = fx(X) | — | Attention(Q, K,V) | — Ausgabe

\ _—

V= fv(X)

Abbildung 4.3: Schematische Darstellung des Attention Mechanismus.

Hierbei wird die SoftMax-Funktion komponentenweise auf die Spalten der Matrix
KTQ € R™™ angewendet. Dies ergibt eine Wahrscheinlichkeitsverteilung pro
Spalte von K Q. Matrixmultiplikation mit V erzeugt eine gewichtete Summe der
Spalten der Values. Oft wird die Matrix K 'Q zusitzlich mit 1/ \/MNembed skaliert.

Dies der Stabilisierung der Berechnung, wie in [25] erldutert wird.

Man kann sich die Rollen von @, K und V wie folgt vorstellen. Die Spalten
von (@ sind Fragen (Queries), die von den Tokens gestellt werden. Die Spalten von
K sind Schliisselworte (Keys), die die Tokens beschreiben. Die Spalten von V' sind
die eigentlichen Informationen (Values), die die Tokens enthalten. Das Attention-
Modell vergleicht nun eine Fragen mit allen Schliisselworten, um zu bestimmen,
welche Tokens fiir die Frage relevant sind. Dabei gehort die i-te Spalte von K 'Q
zur Frage von Token i. Die SoftMax-Funktion wandelt diese Spalten von K 'Q in
eine Wahrscheinlichkeitsverteilung um. Die Matrixmultiplikation mit V' gewichtet
dann die Value-Vektoren entsprechend dieser Wahrscheinlichkeiten. Das Ergebnis
ist eine neue Représentation jedes Tokens, die Informationen aus den relevanten

Tokens im Kontext beriicksichtigt.

Wir interpretieren die Gleichung (4.4) geometrisch: Die Eintriige von KT (Q sind
die paarweise inneren Produkte der Spalten von @ und K (siehe (2.3)):

(K'Q)ij = (ki,qj)-

Je grofer der Eintrag (k;, g;) ist, desto eher ist das Schliisselwort k; eine Antwort
auf die Frage ¢;. Wieder wird also der Winkel zwischen Vektoren (siehe (2.1)) als

Bewertung fiir kontextualen Zusammenhang verwendet!
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Beispiel 4.2.1. Angenommen m = 3. Dann haben ), K und V alle m = 3

Spalten. Seien diese

Q= Q1Q2Q37K: ki ke k3|, V=1_1v vy vs

Dann gilt
(k1,q1) (k1,q2) (K1, q3)
KTQ = | (k2 q1) (k2,q2) (ka,q3)
(k3,q1) (K3, q2) (k3,q3)

Die SoftMax-Funktion wird nun auf jede Spalte von K 'Q angewendet. Die erste
Spalte von SoftMax(K ' Q) ist also

| | | (K1, q:)
SoftMax(K'Q) = | a; as as |, a = SoftMax | (ks,q;)

| | | </€3, Ch‘)

D.h. die j-te Spalte a; ist die durch SoftMax entstehende Wahrscheinlichkeitsver-
teilung, die durch die Anfragen von ¢; auf die Schliisselworte k1, k2 und k3 entsteht.
Dementsprechend ist die j-te Spalte der Attention.Matrix die durch a; gewichtete

Summe der Spalten von V:

| | |
Attention(Q, K, V) = | Va; Vay, Vas

Wir fassen zusammen.
Definition 4.2.1. Das Modell fattention : R™embed XM —y R7embed X gt definiert durch
fattention(X) = Attention(@a K7 V)7

wobei Q = fo(X), K = fx(X) und V = fy(X) die Query-, Key- und Value-
Représentationen sind, die durch neuronale Netze fg, fx und fy aus der Eingabe-

Matrix X berechnet werden.
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Ublicherweise sind die neuronalen Netze fo, fx und fy einfach lineare Abbil-
dungen (also neuronale Netze mit einer Schicht und ohne Aktivierungsfunktion).
Wir nennen diesen Fall die Standardform des Attention-Modells

Definition 4.2.2. Die Query-, Key- und Value-Représentationen in Definition 4.2.1
seien lineare Abbildungen, also @ = W X, K = Wi X und V' = Wy X, wobei
Wq, Wik € RnattenXTembed ynd Wy, € RMembedXTembed (Gewichtsmatrizen sind. Dann

nennen wir das Modell fattention €in Attention-Modell in Standardform.

Sei nun futtention €in Attention-Modell in Standardform. Wir kénnen dann in
(4.4) einsetzen und erhalten fasention(X) = Wy X - SoftMax(X "W W4 X). Diese
Gleichung verdeutlicht eine Schwiche von Attention-Modellen in Standardform:
Permutieren wir die Spalten von X (was dquivalent dazu ist, die Reihenfolge der
Token zu éndern), so werden die Spalten von faention(X) entsprechend permu-
tiert. Wir sagen dazu, dass fastention (X ) Permutations-dquivariant ist. Das Modell
fattention 1St also in gewisser Weise unempfindlich gegeniiber der Reihenfolge der
Eingabetoken. Eine Idee, um diesen Nachteil auszugleichen, ist es, ein neurona-
les Netz p, welches empfindlich auf Permutation reagiert, zu trainineren und das
Attention-Modell zu fatention (X + p(X)) zu modifizieren. In diesem Ansatz nennt

man p Positionscodierung.

4.2.2 Weitere Strategien: Masking, Multihead Attention,

Dropout, Skip Connections und Layer Normalisierung

Wenn alle Eintrige von K'(Q in (4.4) vom Transformer verarbeitet werden, be-
deutet dies, dass jedes Token Fragen an alle anderen Token stellen darf. Stellen wir
uns nun aber vor, dass Token i per Vervollstdndigung aus den vorherigen Token
enstanden ist, dann sollte Token j keine Frage an Token i fiir alle ¢ > j stellen
konnen. Um dies im Transformer darzustellen wird eine Technik names Maskierung
(Masking) eingesetzt. Die Idee ist simpel: Wir ersetzen K'(Q durch eine andere
Matrix maskiert(K ' Q); ;, wobei

KTQ);;, fallsi<j
maskiert(KTQ)i,j = (K Qs . _j. :
—00, falls 7 > 7.
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Dies hat den Effekt, dass SoftMax(maskiert(K'Q));; = e > = 0, falls 7 > j. Die

Anfrage von ¢; an k; findet in diesem Fall nicht statt.

Beispiel 4.2.2. Angenommen m = 3. Die Spalten von K seien ki, ks, k3 und die
Spalten von @ seien ¢i, ¢, qs. Dann sind die Eintrige von K 'Q ohne und mit

Masking gegeben durch

<k1,Q1> </f17Q2> <k1,Q3>
K'Q= | (ky,q1) (k2,q0) (ks.qs) |,
(ks,qu) (ks q2) (k3. q3)

(k1,q1) (ki,q2)  (ki,g3)
maskiert(K Q) = —00  (k2,q2) (k2 q3)

-0 —00 <k3aQS>

In maskiert(K 'Q) kann also ¢; keine Anfrage an die spiiteren Token ko und ks

stellen. Ebenso kann ¢, keine Anfrage an k3 stellen.

Die urspriingliche Publikation zu Attention [25] schldgt einige weitere Kniffe
vor. Der erste davon ist Multihead Attention. Die Idee von Multihead Attention
ist es, mehrere Attention-Modelle parallel zu verwenden und deren Outputs im
Anschluss hintereinander zu legen. Dies ermdoglicht es dem Modell, gleichzeitig

mehrere verschiedene Aspekte des Kontextes zu erfassen.

Definition 4.2.3. Wir verwenden die Notation aus Definition 4.2.1. Angenommen

Nembed 188st sich als Produkt nempea = 1 - b schreiben. Das Modell

fa(ttlt)ention (X)
Futtention (%)

attention

X — c Rnembedxm

Y

£ ion(X)

attention

wobei, wie in Definition 4.2.1, die
FO o RTembea X RERXT ]

attention

Attention-Modelle sind, heift Multihead Attention mit h Kopfen.
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Desweiteren empfiehlt [25] die Verwendung von Skip Connections und Layer
Normalisierung. Skip Connections addieren die Eingabe eines Modells zur Ausgabe
des hinzu, bevor diese weitergegeben wird. D.h., Skip Connections verindern den

Transformer (4.3) zu
T(X) = fNN(Z) + Z, wobel / = fattention(X) + X.

Layer Normalisierung normalisiert die Ausgabe des Attention-Modells, um sicher-
zustellen, dass der empirische Mittelwert (Definition 2.2.5) und die empirische
Varianz (Definition 2.2.7) der Daten 0 und 1 sind. Dies hilft, das Training zu sta-
bilisieren und die Konvergenz zu beschleunigen. Zusatzlich wird die Verwendung
von Dropout empfohlen. Dropout “versteckt” zuféllig einige neuronale Verbindun-

gen wahrend des Trainings, um Uberanpassung zu verhindern.

4.3 Das Large Language Model: Mathematische

Perspektive

Wir sind nun bereit, das Large Language Model (LLM) mathematisch zu be-
schreiben. Dazu ist es hilfreich zunéchst mit der einfachsten Form eines LLMs zu
beginnen. Diese Form besteht aus einem Transformer(-Block) 7" und kann wie folgt

visualisiert werden.

RO ONGEORES

Hierbei sind
e z € E der (Eingabe-)Prompt,
e 7 der Tokenisierer (siehe Definition 4.1.1), der die Eingabe z auf die Token-
folge t = (t1,...,tm) = 7(x) € F abbildet,
e ©:V — R"mbed gine Text-Einbettung (siehe Definition 4.1.1), die die Token-
folge t auf die Einbettungsmatrix X abbildet:

| |
X=1oet1) ... @(tn) | € Rrembeaxm,
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o ' : RMembedXm _y [RMembed X oipy Transformer,

o M : Rrembeaxm _y RE eine finale Matrixtransformation, genannt Head, der

Form
M(A) =UAu, U € RFXMembed 4 ¢ R™,
wobei R = #V die Grofle des Vokabulars 'V ist (siche (4.1)).
Es sei jetzt
z:=(MoToypor)(r)c R~
Der letzte Schritt ist dann SoftMax auf w anzuwenden. Dies gibt dann eine Wahr-
scheinlichkeitsverteilung auf V:

Zi

e

Zf=1 e

Diese Formel gibt die Wahrscheinlichkeit Token ¢ als Vervollstédndigung des Prompts

Py(t; | ©) = SoftMax(z); =

x zu wahlen an. Hierbei sind die Parameter 6 gegeben durch
e die Parameter der Einbettung ¢,
e die Parameter des Transformers T',
e die Matrix U und der Vektor u der Transformation M.

Alternativ kénnen wir mehrere Transformer(-Blocke) hintereinandern schalten.

@H@%@H@H H@%@% SoftMax,

Dies fiihrt zu folgender Definition.

Definition 4.3.1. Ein Large Language Model (LLM) mit s Transformerblécken
Ti,...,Ts, Vokabular V = {t1,...,tg}, Tokenisierung 7, Texteinbettung ¢ und
Head M ist ein statistisches Modell der Form

Py(t; | *) = SoftMax(z);, z=(MoT,o---0Tiopor)(z),

Da ein LLM ein statistisches Modell fiir Klassifizierung ist (welches Token, also
welche Klasse, kommt als Néchstes?), verwendet man iiblicherweise die Cross-
Entropy (siehe Definition 3.2.2) als Verlustfunktion fiir das Training.
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Ein LLM wie in Definition 4.3.1 vervollstéandigt einen Prompt x, indem es ein
Token geméfdem statistischen Modell Py(¢t; | ) generiert. Dieser Token wird dann
an x angehéngt. Diese Vervollstdndigung ist dann ein neuer Prompt, der wiederum
vervollstiandigt wird. Dieser Prozess wird rekursiv fortgesetzt, bis ein Abbruchkri-

terium erfiillt ist. So erzeugt ein LLM Text.

Beispiel 4.3.1. Wir verwenden ein LLM mit s = 3 Transformern und traini-
neren es auf den Transskripten von 393 Spongebob Episoden [2] (vgl. Jupyter-
Notebook 6). Wir geben dem LLM den Prompt x = “Patrick loves math and”.
Die Ausgabe ist dann z.B.:

Patrick loves math and before you leave me. So I just wanted to get
this stuff, right and I'll catch them could be back. [sprays in his tears

and throws the entire building].

Dieser Text ergibt zwar wenig Sinn, die Grammatik ist jedoch korrekt und die
Worte stehen alle in richtigem Kontext zueinander, insbesondere im Vergleich zum
von Bi-Gram generierten Text in Beispiel 4.0.2. Dies zeigt, dass das LLM die
Struktur der Sprache gelernt hat, auch wenn der semantische Inhalt nicht komplett

sinnvoll ist.

Bekannte Sprachmodelle wie ChatGPT oder Gemini funktionieren im Grunde
genauso. Das Besondere an diesen Modellen ist die schiere Anzahl an Parametern:
Schitzungen zufolge [7] hat die Version ChatGPT-40 4 Billionen (4-10'?) Parame-
ter und Gemini 1.5 Pro 1.5 Billionen Parameter (1.5-10'?). Der Zusatz “Large” in
“Large Language Model” bezieht sich vor allem auf diese grofie Anzahl der Para-
meter, mit denen das Modell seine Vorhersagen steuert. Mehr Parameter erhchen
die Kapazitéit, komplexe Muster aus Daten zu erkennen und zu verallgemeinern.
Im Gegensatz zu Sprachmodellen, die ohne Transformer arbeiten, kann ein LLM
mit mehr Parametern viel mehr Information verarbeiten. Das liegt daran, dass ein
Transformer mehr als nur die unmittelbare Nachbarschaft in Texten modellieren
kann. Der Aufmerksamkeitsmechanismus lernt Kontext, der {iber die Positionie-
rung im Text hinausgeht. So kénnen Beziehungen iiber weite Distanzen im Text
erfasst werden, statt nur die unmittelbare Nachbarschaft zu betrachten. Diese Re-
chenart ldsst sich zudem gut parallelisieren, was das Trainieren grofier Modelle
praktikabel macht. Diese Fahigkeit ermoglicht die Entstehung so fortschrittlicher
KI-Systeme wie ChatGPT oder Gemini.
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4.3.1 Expert:innen Modelle

Im vorherigen Abschnitt haben wir das LLM definiert (Definition 4.3.1), indem
wir mehrere Transformer hintereinander geschaltet haben. Wir kénnen Transfor-
mer auch parallel schalten und wie bei einem kiinstlichen neuronalen Netz (siehe
Abschnitt 3.3.3) mehrere Schichten an Transformern verwenden. Diese Art von

Modellen heilen gemischte Expert:innen Modelle (Mixture of Experts).

Hier ist z.B. ein Modell mit zweil Transformer Schichten:
wl
/
O-0—@ @) s
s
2

Hierbei bezeichnen TZ.(O) die Transformer in der ersten Schicht und Tl(l) den Trans-
former in der zweiten Schicht. Wie bei den kiinstlichen neuronalen Netzen sind die
Verbindungen zwischen den Transformern mit Gewichten versehen. Wie im Bild
sei w; das Gewicht der Verbindung von Transformer Tj(o) zu Tl(l). Die Eingabe
von Tl(l) ist dann X' := wy Tl(o) (X) +w, TQ(O) (X). Die Eingabe von M ist dann wie-
derum T 1(1)(X ’). Jeder Transformer ab der zweiten Schickt erhélt also als Eingabe
eine gewichtete Summe der Ausgaben der Transformer aus der vorherigen Schicht.

Die Gewichte sind Parameter des Modells.

Dieses Beispiel mit zwei Schichten lésst sich auf beliebig viele Schichten und be-
liebig viele Transformer erweitern. Das folgende Bild zeigt ein LLM mit L Trans-

former Schichten, wobei die i-te Schicht n; Transformer enthélt.

AGN
olcoqny,

06
oo

~
@e SoftMax.
d

©
&
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Es miissen nicht alle Verbindungen vorhanden sein. Zudem kénnen Verbindun-

gen auch “nach links” gehen — genau wie bei den rekurrenten neuronalen Netzen
(siche Abschnitt 3.3.3).

Der Name gemischtes Expert:innen Modell kommt nun von der Strategie, die
einzelnen Transformer im Netzwerk auf bestimmte Aufgaben zu trainieren. Jeder
Transformer wird als ein:e FExpert:in fiir eine bestimmte Aufgabe betrachtet. Das
Netzwerk als Ganzes lernt dann, welche Aufgabe welche:r Expert:in gestellt werden

muss, um das beste Ergebnis zu erzielen.

Bei modernen gemischten Expert:innen Modellen wird das Sprachmodell in vie-
le spezialisierte Teilnetze zerlegt, die nicht nur aus einem einzelnen Transformer
bestehen miissen, sondern einzelne Rechenblocke innerhalb der Schichten,. Ein
gezielter Auswahlmechanismus bewertet fiir jedes Eingabetoken, welche wenigen
Expert:innen voraussichtlich am niitzlichsten sind, und aktiviert nur diese; alle an-
deren bleiben inaktiv. So kann das Modell unterschiedliche Muster und Fahigkeiten
arbeitsteilig abdecken, ohne dass jedes Token die Rechenarbeit aller Komponenten
auslosen muss. D.h. nicht alle Expert:innen sind gleichzeitig aktiv. Pro Eingabeto-
ken wird nur ein kleiner Teil aktiv geschaltet. Der entscheidende Vorteil liegt in der
Kombination aus Groéfle und Effizienz: Die Gesamtzahl der erlernbaren Parameter
kann sehr hoch sein (viele spezialisierte Expert:innen), wihrend der tatséchliche
Rechenaufwand pro Token nur von einer kleinen aktiven Teilmenge abhéngt. Da-
durch entsteht hohe Spezialisierung, ohne die Kosten pro Anfrage proportional zur
Gesamtgrofle steigen zu lassen. Gleichzeitig muss das System zuverléssig auswéhlen
und die Arbeit gleichméfig verteilen, damit keine Expert:innen iiberlastet werden

und die gewonnenen Fahigkeiten des Modells tatsédchlich wirksam werden.

In modernen KI-Sprachsystemen wird die praktische Ausrichtung durch nach
dem Training stattfindende Feinabstimmung auf Anweisungen gewéhrleistet. Die-
se Feinabstimmung passiert u.A. durch menschliches Feedback und macht aus ei-
nem LLM eine hilfreiche, verldssliche Assistenz. Gemischte Expert:innen Model-
le ergénzen dies um interne Spezialisierung: Sie verbinden eine breit skalierbare
Architektur mit gezielter Aktivierung der passenden Teilnetze. So konnen solche

Systeme zugleich sehr grofl und effizient sein.
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4.3.2 Ubungsaufgaben

Aufgabe 4.3.1. Fiihren Sie das sechste Jupyter-Notebook iiber Large Langua-
ge Models aus und versuchen Sie jeden Schritt nachzuvollziehen. Dieses Notebook
basiert in groflen Teilen auf dem Blog-Post Generative transformer from first prin-

ciples in Julia von Lior Sinai [24].

Aufgabe 4.3.2. In dieser Vorlesung haben wir die mathematischen Grundlagen
von KI und Datenanalyse kennengerlernt. Ein grofler Fokus lag dabei auf soge-
nannten Modellen, inbesondere kiinstliche neuronale Netze und Large Language
Models. Diskutieren Sie untereinander, ob und wie diese Inhalte in den Schullehr-
plan integriert werden kénnten. Was wiren geeignete Themenbereiche? Welche
Altersstufen sind geeignet? Welche Vorkenntnisse werden benotigt? Welche Kom-
petenzen sollten vermittelt werden? Ist der mathematische Ansatz sinnvoll fiir den
Schulunterricht? Oder braucht es einen umfassenderen Zugang, auch soziale und
ethische Aspekte einbezieht? Wie konnte eine Fortbildung fiir Lehrkrifte aussehen,

die diese Themen unterrichten sollen?

Aufgabe 4.3.3. Uberlegen Sie, was fiir Sie das wichtigste und interessanteste ist,
was Sie in dieser Vorlesung iiber KI gelernt haben. Teilen Sie — wenn Sie méchten —
Ihre Gedanken iiber Social Media. Versuchen Sie Ihre Gedanken so zu formulieren,
das es fiir ein breites Publikum versténdlich ist. Evaluieren Sie die Riickmeldungen,
die Sie erhalten. Was denken Sie ist die allgemeine Wahrnehmung von KI? Wie

unterscheidet sich diese von Threr eigenen Sichtweise?

Aufgabe 4.3.4. Lesen Sie die Masterarbeit “Growing up with AI” [12]. Welche
Implikation ergeben sich fiir den Umgang mit Schiiler:innen, die mit KI-Systemen
aufwachsen? Wie konnen Lehrkrafte und Schulen diese Herausforderungen adres-

sieren?
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4 Large Language Models

Aufgabe 4.3.5. Beim Einfiigen der Daten zur Referenz [12] wurde ein LLM be-
nutzt. Dabei wurden ménnliche Pronomen (“er” und “seine”) von der KI verwen-
det, obwohl die Autorin Stefania Druga weiblich ist. Was konnte der Grund dafiir

sein?

Aufgabe 4.3.6. Horen Sie die ARD Audiodokumentation “Kiinstliche Néhe —
Doku iiber KI, Vertrauen und Abhéngigkeit” [3] (Achtung: Triggerwarnung wegen
Einsamkeit und Anorexie). Reflektieren Sie den Inhalt vor dem Hintergrund, was

Sie in der Vorlesung gelernt haben.
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5 AbschlieBende Worte

Die Veroffentlichung von ChatGPT-3 Ende 2022 hat weltweit einen KI-Hype aus-

gelost. Diesem Hype miissen sich auch Lehrer:innen im Unterrichtskontext stellen.

So gibt es diverse KI-Tools, die z.B. bei der Klausurkorrektur helfen sollen. Die-
se basieren oftmals auf sogenannten Large Language Models (LLMs). Doch wie
wir in dieser Vorlesung ausgearbeitet haben, sind LLMs statistische Modelle und
daher von Natur aus mit Unsicherheit behaftet. Dies wird in der Offentlichkeit
iiblicherweise mit Halluzinationen bezeichnet, was jedoch verschleiert, dass die
Unsicherheit Teil des Modells ist. Diese Modelle verstehen nicht, sondern gene-
rieren zufélligen Text. Dementsprechend sollte man vorsichtig bei der Benutzung
von LLMs fiir kritische Aufgaben wie Klausurkorrekturen sein. Die Artikel [20,23]

beschreiben dies eindriicklich.

Das Ziel dieser Vorlesung war es daher, Lehrkréften verstdndlich zu machen, wie
KI-Modelle funktionieren. Ein grofler Fokus lag dabei auf LLMs, auf denen auch
ChatGPT oder Gemini basieren. Indem Lehrer:innen lernen, wie diese Modelle
funktionieren, kénnen Sie sie kritisch einordnen und den Schiiler:innen Medien-

kompetenz mit auf den Weg geben.

Dies geht iiber die blole Nutzung von KI-Chatbots fiir schulische Aufgaben wie
z.B. Hausaufgaben hinaus. Menschen, insbesondere Kinder, neigen dazu, Maschi-
nen zu anthropomorphisieren. Stefanian Druga hat dies in ihrer Arbeit “Growing

up with AI” [12] bereits 2018 wie folgt zusammengefasst:

“[...] humans anthropomorphize objects and are capable of engaging

socially with machine.”
und weiter

“This leads us to question how much children could be influenced by Al
now that it is becoming personified, embodied and able to lead conver-

sations?”

Lehrer:innen spielen eine zentrale Rolle bei der Beantwortung dieser Frage.
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5 Abschliefende Worte

Dartiber hinaus ist die offentliche Debatte tiber KI meistens wirtschaftlicher oder
technologischer Art. So heifit es auf der Website der Arbeitsgruppe “Kritikalitat

KI-basierter Systeme” des Weizenbaum-Instituts [4]

“Obwohl sie den Alltag der Biirger:innen bereits in vielfdiltigster Weise
beeinflussen, agieren viele KI-Systeme bisher als Blackbox. Ihre éffentliche
Wahrnehmung st mafSgeblich geprédgt von Misstrauen, aber auch von

Unwissenheit tiber das theoretische Gertist dieser Systeme.”

Dazu passt der bereits 2019 in der ZEIT erschienene Artikel von Harald Wel-
zer [27]. Dort schreibt er, dass “wir Digitalisierung endlich als gesellschaftspoliti-
sche Frage begreifen miissen”. Er vermisst die Diskussion um die “flichendeckende

Implementierung einer Grofitechnologie”.

Den allgegenwértigen Einfluss von KI-Modellen zu moderieren oder sogar zu
steuern ist eine wichtige gesellschaftliche Aufgabe der nahen Zukunft. Dabei ist
es wichtig die Mathematik hinter der KI zu verstehen. Lehrer:innen kommt dabei

eine entscheidende Rolle zu.
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