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2.5.2 Übungsaufgaben . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Lineare Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6.1 Vektoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6.2 Matrizen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

iii



2.6.3 Matrix-Vektor und Matrix-Matrix Produkt . . . . . . . . . . 51
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1 Einleitung

1.1 Warum KI und Datenanalyse für Lehrer:innen?

Vielen Dank an Amelie Mühlmeyer, Mara Prehn und Timotheus Tevs für Ihre

Beiträge, die bei der Enstehung der folgendenen Einleitung geholfen haben.

Künstliche Intelligenz und Datenanalyse wird für den Lehrer:innenberuf zuneh-

mend wichtig. Wissen in diesem Bereich trägt zur Verbesserung der Unterrichts-

qualität und zur Förderung von Datenkompetenz und digitaler Mündigkeit bei.

In einer zunehmend digitalisierten Welt und mit dem Aufkommen von KI ge-

winnen Daten auch im Bildungsbereich eine immer größere Bedeutung. Wenn

Lehrer:innen lernen, diese Daten zu verstehen und zu nutzen, können Sie ihren

Unterricht dadurch verbessern. Schon bei der Auswahl und Nutzung von digi-

talen Lernangeboten spielt Datenanalyse eine wichtige Rolle. Lehrkräfte müssen

einschätzen können, welche Apps und Plattformen pädagogisch sinnvoll sind und

wie zuverlässig ihre Datenauswertung funktioniert. Nur wenn sie verstehen, wie

diese digitalen Tools Daten erheben und interpretieren, können sie deren Ergeb-

nisse kritisch hinterfragen und gezielt im Unterricht einsetzen. Auf diese Wei-

se lassen sich verschiedene digitale Lernmöglichkeiten vergleichen und fundier-

te Entscheidungen darüber treffen, welche Anwendungen den Lernfortschritt der

Schüler:innen tatsächlich unterstützen.

Ein grundlegendes Verständnis von Datenanalyse und Statstik ermöglicht Lehr-

kräften, Lernprozesse gezielt zu beobachten, Daten selbst zu erheben und erhobene

Daten richtig zu interpretieren. Die Arbeit mit Ergebnissen digitaler Lernangebo-

te oder auch Lernstandserhebungen ermöglicht es, den Unterricht evidenzbasiert

zu gestalten. Beispielsweise zeigen Auswertungen der Vergleichsarbeiten in der

Grundschule (VERA) [17] nicht nur Rohwerte, wie die Anzahl richtig gelöster
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1 Einleitung

Aufgaben, sondern ordnen die Ergebnisse auch in Kompetenzstufen ein und lassen

so Vergleiche mit Klassen oder Landeswerten zu. Um aus diesen Daten sinnvolle

Schlüsse zu ziehen sind Kenntnisse in Datenanalyse unerlässlich.

Lehrkräfte, die verstehen, wie Daten generiert, ausgewertet und interpretiert

werden, können daraus methodisch sinnvolle Konsequenzen ziehen, beispielswei-

se wo systematische Schwächen zu finden sind, welche Aufgabenformate beson-

ders guten Lernerfolg erzielen, welche Unterrichts- und Fördermaßnahmen wirklich

sinnvoll sind und an welchen Stellen besser differenziert werden muss.

Darüberhinaus können Lehrkräfte, die Wissen über die Mathematik hinter Sta-

tistik, Datenanalyse und KI-Modellen haben, diese im Unterricht besser einordnen.

In vielen Lebenssituationen werden schon Kinder damit konfrontiert, Entscheidun-

gen auf der Basis davon zu treffen, ob etwas wahrscheinlich oder unwahrscheinlich

ist. Dies geschieht bereits in der Grundschule bei vielen Gesellschaftsspielen. Wenn

Lehrkräfte Wahrscheinlichkeiten verstehen, können die ein Grundverständnis kind-

gerecht vermitteln und beim Denken und Entscheiden fundiert unterstützen. Sie

können die Schüler:innen besser auf den Umgang mit modernen digitalen Techno-

logien vorbereiten und ihnen beibringen, selbst erhobene oder vorliegende Statisti-

ken zu hinterfragen, sie kritisch zu interpretieren und Daten sinnvoll darzustellen.

Schon in der Grundschule kann durch einfache Formen der Datenerhebung und

-auswertung ein erstes Bewusstsein dafür geschaffen werden, wie Daten Informa-

tionen liefern und Entscheidungen beeinflussen. So können Lehrkräfte das kritische

Reflektieren und einen verantwortungsvollen Umgang mit Informationen fördern.

Besonders wichtig ist aber das Verständis für Künstliche Intelligenz, die unse-

ren Alltag immer mehr beeinflusst. Nur wenn Lehrer:innen verstehen, wie digitale

Systeme und KI-basierte Modelle funktionieren, können sie Kindern vermitteln,

dass Informationen aus KI-System nicht objektiv und fehlerfrei sind. Kinder soll-

ten lernen, die Ausgaben aus KI-Systemen kritisch zu hinterfragen, die Ergebnisse

kritisch zu reflektieren und vor allem KI-Modelle verantwortungsvoll zu nutzen –

sie müssen dahingehend Medienkompetenz erlernen.

So trägt das Wissen, welches eine Lehrkraft im Bereich Datenanalyse und digi-

taler Technologien mitbringt, letztendlich dazu bei, Schüler:innen auf eine Zukunft

vorzubereiten, in der ein kompetenter und reflektierter Umgang mit Daten und di-

gitalen Technologien eine grundlegende Kompetenz ist. Kompetenz in Datenanaly-
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se und künstlicher Intellizgenz hilft Lehrkräften dabei, Kinder gut auf die heutige

Welt vorzubereiten. Sie unterstützt nicht nrt den Unterricht, sondern fördert auch

das kritische Denken und einen bewussten Umgang mit Daten.

1.2 Überblick über die Vorlesung

Diese Vorlesung hat das Ziel, die Mathematik hinter KI-Modellen zur Datenana-

lyse verständlich zu machen. Damit fokussiert sie sich auf den zweiten Teil des

vorherigen Abschnitts. Insbesondere sind konkrete Apps oder Plattformen zur Da-

tenauswertung im Unterricht nicht teil dieser Vorlesung. Die Vorlesung konzen-

triert sich auf die mathematischen Grundlagen in Wahrscheinlichkeitstheorie und

linearer Algebra, sowie die mathematische Formulierung von KI-Systemen. Damit

soll die Vorlesung dazu beitragen, Lehrer:innen die grundlegende Funktionsweise

moderner KI-Systeme verständlich zu machen, so dass sie diese Kompetenz wie

zuvor beschrieben in den Unterricht mitnehmen können.

Es wird keine höhere Mathematik als Vorwissen vorausgesetzt. Die mathema-

tischen und statistischen Grundlagen werden im ersten Kapitel diskutiert. Die

weiteren Kapitel behandeln die Grundlagen der künstlichen Intelligenz, insbeson-

dere künstliche neuronale Netze, und das sogenannte Large Language Model, auf

dem z.B. ChatGPT oder Gemini basieren.

1.2.1 Jupyter Notebooks

Dieses Skript enthält verschiedene Übungsaufgaben. Einige davon sind Program-

mieraufgaben. Dazu werden beispielhaft 6 Jupyter Notebooks [5] bereit gestellt. Die

Notebooks sind in der Programmiersprache Julia [8] geschrieben und behandeln

die folgenden Themen:

(1) Julia Basics.

(2) Matrizen und Bilder.

(3) Modelle im maschinellen Lernen.

(4) Neuronale Netze zur Klassifikation.

(5) Einfache Sprachmodelle.

(6) Large Language Models.

Das Highlight in dieser Liste ist das letzte Notebook über Large Language Models

(LLMs). Hier wird ein LLM von Grund auf implementiert und trainiert, so dass

jeder Baustein eines LLMs nachvollzogen werden kann.
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Es werden keine tiefen Programmier- oder Julia-Kenntnisse benötigt um die

Notebooks ausführen. Hier ist eine Anleitung zur Installation:

(1) Folgen Sie der Anleitung auf der Seite https://julialang.org/downloads/, um

Julia auf Ihrem System zu installieren.

(2) Installieren Sie danach das Paket IJulia in der Julia-Konsole mit dem Be-

fehl:

using Pkg

Pkg.add("IJulia")

(3) Ein neues Notebook starten Sie in der Julia-Konsole mit dem Befehl:

using IJulia

notebook ()

(4) Im Anschluss öffnet sich ein Browser-Fenster, welches die Dateien auf Ihrem

System zeigt. Navigieren Sie zum ersten Notebook und öffnen es mit einem

Doppelklick.

(5) Führen Sie die Jupyter Notebooks Zeile für Zeile aus. Versuchen Sie nachzu-

vollziehen, was in den einzelnen Zeilen passiert.

4

https://julialang.org/downloads/


2 Mathematische Grundlagen

Dieses Kapitel führt in die mathematischen Grundlagen ein, die wir später brau-

chen werden, um die Methoden der künstlichen Intellizenz (KI) und des maschinel-

len Lernens (ML) zu beschreiben und zu verstehen. Für mehr Details wird auf [16]

(für den wahrscheinlichkeitstheoretischen Teil) und [15] (für lineare Algebra) ver-

wiesen.

2.1 Deskriptive Statistik

Das Ziel der deskriptiven Statistik ist es, Datenmengen zu beschreiben; dies ge-

schieht hauptsächlich durch die Berechnung von Kennzahlen und die graphische

Veranschaulichung. Diese Kennzahlen helfen uns, Muster und wesentliche Eigen-

schaften in den Daten zu erkennen.

Mathematisch lässt sich dies wie folgt modellieren: Gegeben ist eine Menge von

Daten

D = {e1, . . . , eN} ⊆ Ω,

wobei Ω eine Grundmenge darstellt. Die Elemente ei für 1 ≤ i ≤ N sind die

einzelnen Datenpunkte. Wir haben also insgesamt N Daten in D. Das Ziel ist es

nun, Informationen aus D zu gewinnen und zusammenzufassen.

Definition 2.1.1 (Grundbegriffe). Ω heißt statistische Grundgesamtheit oder

Menge aller möglichen Ereignisse. D heißt Stichprobe oder Datensatz.

Beispiel 2.1.1.

(1) Wir werfen einen Würfel N = 7 mal. Dann ist D = {Wurf 1, . . . ,Wurf 7}
die konkrete Sammlung unserer Beobachtungen. Ω ist die Menge aller theore-

tisch möglichen Würfe, inklusive aller Begleitumstände (Zeitpunkt, wer wirft,
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Temperatur etc.). Diese Unterscheidung ist wichtig, da Ω alle potenziellen

Informationen enthält, während D nur die tatsächlich beobachteten Daten

repräsentiert.

(2) Wir beobachten die Haarfarben unserer Kommiliton:innen. Das Ergebnis

könnte sein: D = {blond, rot, schwarz}. Ω ist dann die Menge aller möglichen

Haarfarben, die grundsätzlich auftreten können.

Dieses Beispiel verdeutlicht, dass Daten nicht zwangsläufig durch Zahlen ausge-

drückt werden müssen. Sie können auch kategorisch sein. Es kann auch verschie-

dene Möglichkeiten geben, die Grundmenge Ω zu definieren, je nachdem, welche

Aspekte der Daten wir berücksichtigen möchten. Beispielsweise könnten wir Ω im

zweiten Beispiel auf die Menge der Haarfarben aller Studierenden an der Univer-

sität erweitern. Dies würde die Analyse beeinflussen, da wir dann eine kleinere

Grundgesamtheit betrachten.

2.1.1 Merkmale

Um Daten besser zu verstehen zu können, betrachten wir verschiedene Merkmale.

Mathematisch modellieren wir diese wie folgt:

Definition 2.1.2 (Merkmal). Seien Ω und W Mengen und X : Ω → W eine

Funktion. Diese Funktion ordnet jedem Element aus der Grundmenge Ω einen

Wert aus der Menge W zu. Wir nennen X Merkmal (oder Messwert) und W

Wertebereich. Ist D = {e1, . . . , eN} ⊂ Ω ein Datensatz, so nennen wir xi = X(ei)

Beobachtung.

Die Funktion X ist entscheidend, da sie bestimmt, welche Information aus den

Daten extrahiert wird.

Beispiel 2.1.2. Ω ist die Menge aller Münzwürfe und D = {Wurf 1, . . . ,Wurf N}.
Sei weiterhin W = {Kopf,Zahl}. Dann ordnet die Funktion X : Ω → W einem

Wurf Kopf oder Zahl zu. Dies ist ein einfaches Beispiel für ein Merkmal, das uns

sagt, wie ein einzelner Datenpunkt (in diesem Fall ein einzelner Wurf) kategorisiert

wird.
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2 Mathematische Grundlagen

Beispiel 2.1.3. Der FashionMNIST [28] Datensatz enthält Bilder verschiedener

Kleidungsstücke. Wir betrachten hier 8 Beispielbilder.

Wir bezeichnen das erste Bild als e1, das zweite als e2 usw. Dann ist der Datensatz

D = {e1, . . . , e8}.

Das Merkmal, das uns interessiert, ist die Art des Kleidungsstücks, das auf dem

Bild zu sehen ist. Beispielsweise ist

X(e1) = Sandale, X(e4) = Jacke.

Das Ziel im Abschnitt über maschinelles Lernen wird es sein, eine Funktion X zu

lernen, die jedem Bild das korrekte Kleidungsstück zuordnet. Interessanterweise

können Menschen diese Zuordnung oft automatisch und mühelos vornehmen – das

ist ein Beispiel für Intelligenz, die wir mit maschinellem Lernen nachbilden wollen.

Warum ist die Unterscheidung zwischen D und W wichtig? Wozu brauchen

wir D überhaupt? Reicht es nicht, nur mit Merkmalen zu arbeiten?

Wir benötigen die Unterscheidung zwischen D und W , um verschiedene Daten-

punkte auch dann unterscheiden zu können, wenn sie denselben Wert im Werte-

bereich W haben. Betrachten wir erneut den Münzwurf: Wir möchten den ersten

Wurf vom zweiten unterscheiden, auch wenn beide Kopf zeigen. Im Wertebereich

W sind beide Würfe identisch, da sie beide ”Kopf” sind. Um die Reihenfolge und

die Individualität der Würfe zu berücksichtigen, benötigen wir den Datensatz D.

Ähnliches gilt für die Bilder im FashionMNIST-Datensatz: Wenn wir nur W be-

trachten, verlieren wir die Information, dass es sich um unterschiedliche Bilder

handelt, die durch 28× 28 Pixel Grauwerte dargestellt werden.

Die Rolle von W ist es also, die für uns relevanten Informationen zu extrahieren

und darzustellen, während D die vollständigen Daten, wie sie vorliegen, enthält.

Wir fassen verschiedene Arten von Merkmalen zusammen:
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Definition 2.1.3 (Merkmaltypen).

(1) Ein X ist ein quantitatives Merkmal, wenn W ⊆ R. Das bedeutet, dass

die Beobachtungen xi = X(ei) durch messbare Größen definiert sind. Wir

unterscheiden zwei Fälle:

• diskret :

W besteht aus isolierten Punkten (z.B. Alter in Jahren: W = N).

• stetig :

W ist kontinuierlich (z.B. Temperatur in ◦C: W = (−273,∞)).

(2) Ein X ist ein nominales Merkmal, wennW eine endliche Menge von Bezeich-

nungen (Wörtern oder Buchstabenfolgen) ist (z.B.W =Menge der möglichen

Wohnorte).

(3) Ein X ist ein ordinales Merkmal, wenn es nominal ist und es zusätzlich

eine natürliche Ordnung auf W gibt (z.B. W = {groß,mittel, klein} mit der

Ordnung klein < mittel < groß).

Definition 2.1.4. Sei X = (X1, . . . , Xk) eine Liste (ein Vektor) von Merkmalen.

Dann nennen wir X ein multivariates Merkmal.

Beispiel 2.1.4. X = (X1, X2), wobei X1 = Name einer Stadt (nominales Merk-

mal) und X2 = Anzahl Einwohner (quantitativ diskret) sind.

2.1.2 Grafische Darstellung von Häufigkeitsverteilungen

Da wir nun die Begrifflichkeiten geklärt haben, wollen wir nun Methoden zur Be-

schreibung von Datensätzen verstehen. In diesem Abschnitt behandeln wir grafi-

sche Darstellungen, um Daten zu visualisieren, was uns dabei hilft Muster, Aus-

reißer und die zugrundeliegende Struktur der Daten zu erkennen.

Sei dazu Ω eine statistische Grundgesamtheit; X : Ω → W ein Merkmal mit

Wertebereich W und D = {e1, . . . , eN} ein Datensatz der Größe N . Wir treffen

folgende Annahmen.

• X ist entweder nominal, ordinal oder quantitativ diskret.

• W ist endlich, wobei M := #W die Anzahl der möglichen Ausprägungen

des Merkmals beschreibt.
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Außerdem nehmen wir an, dass

W = {w1, . . . , wM}

nummeriert ist. Diese Nummerierung ist wichtig, um die Ausprägungen des Merk-

mals quantitativ zu behandeln, auch wenn sie ursprünglich keine numerische Be-

deutung haben.

Als erstes definieren wir die sogenannte empirische Häufigkeitsverteilung der Da-

ten D. Diese Verteilung gibt uns einen Überblick darüber, wie oft jede Ausprägung

des Merkmals im Datensatz vorkommt.

Definition 2.1.5 (Häufigkeitsverteilung). Die Zahl

Nj := #{i | 1 ≤ i ≤ N,X(ei) = wj} = #X−1(wj)

ist die absolute Häufigkeit des Merkmals wj. Die relative Häufigkeit von wj ist

fj :=
Nj

N

Weiterhin ist (N1, . . . , NM) die absolute Häufigkeitsverteilung des Merkmals X der

Daten D und (f1, . . . , fM) ist die relative Häufigkeitsverteilung.

Es gilt immer:

(1)
∑M

j=1Nj = N

(2)
∑M

j=1 fj =
∑M

j=1
Nj

N
= 1

N

∑M
j=1Nj =

N
N

= 1.

Die zweite Eigenschaft stellt sicher, dass die Summe der relativen Häufigkeiten

immer 1 ergibt, was sie zu einer Wahrscheinlichkeitsverteilung macht (siehe Defi-

nition 2.3.1). Wahrscheinlichkeitsverteilungen sind ein grundlegendes Konzept im

maschinellen Lernen. Sie spielen im Kapitel zu Large Language Models (Kapitel 4)

eine zentrale Rolle.

Beispiel 2.1.5. W = {a, b, c} (nominales Merkmal mit M = 3 Ausprägungen)

und D = {e1, . . . , e5} (N = 5 Datenpunkte). Weiterhin sei

X(e1) = a, X(e2) = b, X(e3) = a, X(e4) = a, X(e5) = a.

9
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Sei etwa w1 = a, w2 = b, w3 = c. Dann gilt:

(N1, N2, N3) = (4, 1, 0), (f1, f2, f3) = (0.8, 0.2, 0)

(4-mal a, 1-mal b und 0-mal c, bzw. 80% der Daten sind a, 20% sind b und 0%

sind c).

Definition 2.1.6 (Balkendiagramm). Ein Balkendiagramm stellt die Verteilung

eines nominalen, ordinalen oder quantitativ diskreten Merkmals dar. Auf der x-

Achse werden die Werte aus W aufgetragen. Über wj ∈ W wird ein Balken der

Länge Nj (oder fj) gezeichnet.

Hier ist ein simples Beispiel.

Beispiel 2.1.6. W = {a, b, c}, (N1, N2, N3) = (3, 2, 4), a = w1, b = w2, c = w3

W

absolute Häufigkeit Nj

a b c

1
2
3
4
5

W

relative Häufigkeit fj

a b c

0.1
0.2
0.3
0.4
0.5

Für quantitativ kontinuierliche Daten benutzen wir ein Histogramm. Die Idee

ist es, einen kontinuierlichen WertebereichW ∈ R in Einzelstücke zu zerlegen. Wir

sagen auch diskretisieren.

Definition 2.1.7 (Diskretisierung). SeiW ⊆ R ein kontinuierlicher Wertebereich.

Seien weiterhin Ij = [vj, vj+1), 1 ≤ j ≤ k, halboffene Intervalle, sodass

(1) W ⊆
⋃k

j=1 Ij

(2) vj < vj+1 für alle 1 ≤ j ≤ k− 1 (d.h. jeder Punkt in W liegt in genau einem

Intervall Ij).

Dann nennen wir (I1, . . . , Ik) eine Diskretisierung von W .

Eine sinnvolle Diskretisierung ist entscheidend für die Interpretation des Histo-

gramms. Die Wahl der Intervalle (Bin-Breite) kann die Visualisierung erheblich

beeinflussen.
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Definition 2.1.8 (Häufigkeitsverteilung quantitativ stetiger Merkmale). Gegeben

sei ein Merkmal X : Ω → W und ein Datensatz D = {e1, . . . , eN} ⊂ Ω. Sei

I = (I1, . . . , Ik) eine Diskretisierung von W . Wir definieren (wie zuvor)

Nj = #{i | 1 ≤ i ≤ N : X(ei) ∈ Ij} = #X−1(Ij), fj =
Nj

N
.

(1) (N1, . . . , Nk) ist die absolute Häufigkeitsverteilung von X bzgl. der Diskreti-

sierung.

(2) (f1, . . . , fk) ist die relative Häufigkeitsverteilung.

Definition 2.1.9. Ein Histogramm stellt die Häufigkeitsverteilung eines quantita-

tiv stetigen Merkmals als Balkendiagramm nach Transformation in ein quantitativ

diskretes Merkmal dar.

Beispiel 2.1.7. W = [0, 5), I = (I1, I2, I3) mit

I1 = [0, 1), I2 = [1, 3), I3 = [3, 5).

Angenommen (N1, N2, N3) = (3, 2, 4) ist die zu dieser Diskretisierung gehörende

Verteilung. Dann ist das Histogramm wie folgt.

W

absolute Häufigkeit Nj

0 1 2 3 4 5

1
2
3
4
5

W

relative Häufigkeit fj

0 1 2 3 4 5

0.1
0.2
0.3
0.4
0.5

Die gestrichelten Linien geben hierbei die Grenzen der einzelnen Intervalle in der

Diskretisierung an (normalerweise werden diese in einem Histogramm aber nicht

angezeigt).

Eine weitere Möglichkeit die Häufigkeitsverteilung eines quantitativen Merkmals

zu beschreiben ist die empirische Verteilungsfunktion. Die empirische Verteilungs-

funktion gibt für jeden Wert x den Anteil der Beobachtungen an, die kleiner oder

gleich x sind.

11
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Definition 2.1.10. Sei X ein Merkmal mit Wertebereich W ⊆ R. Angenommen

wir haben Daten mit Beobachtungen x1 = X(e1), . . . , xN = X(eN). Die zugehörige

empirische Verteilungsfunktion ist:

FN(x) =
1

N
#{i | 1 ≤ i ≤ N : xi ≤ x}.

Die empirische Verteilungsfunktion dient zur Schätzung der Verteilungsfunktion

der Grundgesamtheit.

Beispiel 2.1.8. N = 4, x1 = 0, x2 = 2, x3 = 2, x4 = 5

x

FN(x)

-2 -1 1 2 3 4 5 6 7

0.25
0.5
0.75

1

2.1.3 Übungsaufgaben

Aufgabe 2.1.1. Wir beobachten ein multivariates Merkmal mit zwei Ausprägungen

Initialen und Note:

Initialen AB CD GH NO TU

Note 1 4 2 4 3

(1) Um welche Art von Merkmalen handelt es sich hier?

(2) Berechnen Sie Rangwerte, Mittelwert und Median des Merkmals Note. Wie

ändern sich diese Werte wenn wir eine zusätzliche Beobachtung (ML, 4) ma-

chen?

12
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Aufgabe 2.1.2. Laden sie das Package DataFrames (es muss eventuell zuerst

installiert werden) in eine Julia Session:

using DataFrames

Definieren Sie in Julia zwei Vektoren Initialen und Note mit den Einträgen aus

der Tabelle aus Aufgabe 1. Definieren Sie dann ein DataFrame mit dem Befehl.

D = DataFrame(Initialen=Initialen , Note=Note)

Erklären Sie die Ergebnisse folgender Zeilen:

D

D[1:2, :]

D[:, 1:2]

size(D)

sort(D, [:Note])

D[D.Note .> 2, :]

Aufgabe 2.1.3. Gegeben seien die drei Merkmale in der folgenden Tabelle.

Alter Fernsehzeit in h/Woche besitzt ein Smartphone

6 5 nein

8 10 ja

7 3 nein

10 15 ja

6 8 ja

7 9 nein

7 13 ja

9 8 ja

(1) Beurteilen Sie, um welche Art von Merkmalen es sich jeweils handelt.

(2) Speichern Sie die Daten in einem DataFrame.

(3) Berechnen Sie ein DataFrame, welches nur die Daten von Kindern enthält,

die ein Smartphone besitzen.

(4) Berechnen Sie ein DataFrame, welches nur die Daten von Kindern enthält,

die älter als 8 sind.
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Aufgabe 2.1.4. Diese Aufgabe soll mit der grundlegenden Syntax von Julia

vertraut machen.

(1) Definieren Sie in Julia folgende Vektoren:

x = [1, 2, 3, 4, 5, 6]

y = collect (1:6)

Erklären Sie die Ergebnisse der folgenden Zeilen:

x

x - y

x + y

x .* y

x.^2 .+ 2

length(x)

n = length(x + y)

sum(x+y)/n

(2) Definieren Sie in Julia folgende Vektoren:

x = collect (0:2:10)

y = collect (5: -1:1)

z = ["a", "b", "c"]

Erklären Sie die Ergebnisse der folgenden Zeilen:

y

x[1:3]

y[[1, 2, 4]]

z[2]

[x; z]

x .> 2

x[x .> 2]

x[x .> 2 .&& x .<= 8]

y[y .== 5 .|| y .< 2]

(3) Führen Sie folgenden Code aus. Was passiert?

for i in 1:10

println(i)

end
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2.2 Kennzahlen der deskriptiven Statistik

Im letzten Abschnitt haben wir Daten visuell beschrieben. Im Gegensatz dazu

wollen wir in diesem Abschnitt Daten durch Kennzahlen beschreiben.

Wir fokussieren uns auf quantitative Daten mit Wertebereich W ⊆ R. Die re-

levanten Informationen, die wir in diesen Abschnitt verstehen wollen sind (1) wo

sich die Daten befinden (zentrale Tendenz) und (2) wie weit verstreut die Daten

sind (Variabilität).

Beispiel 2.2.1. Verteilung von Temperaturdaten. (1) Wo: Wenn die Daten alle

bei um die 20◦C liegen, dann handelt es sich um einen warmen Ort. (2) Wie

weit: In Osnabrück liegt die Temperatur das Jahr über ca. zwischen −10◦C und

+30◦C. Temperaturdaten sind hier über das Intervall [−10, 30] verstreut. Auf den

kanarischen Inseln hingegen ist das ganze Jahr über eine Temperatur von ca. 25◦C.

Hier sind die Temperaturdaten weniger verstreut.

Für die relevanten Definitionen ordnen wir die Daten zunächst. Die Sortierung

der Daten ist oft ein erster Schritt in der Datenanalyse. Wir zuvor bezeichnen wir

mit xi = X(ei) das Merkmal des Datenpunktes ei ∈ D.

Definition 2.2.1 (Rangwerte). Seien x1, . . . , xN ∈ R Beobachtungen eines quan-

titativen Merkmals. Wir nummerieren um, so dass x(1) ≤ x(2) ≤ x(3) ≤ . . . ≤ x(N).

Wir nennen x(i) den i-ten Rangwert, x(1) das Minimum und x(N) das Maximum.

Beispiel 2.2.2. Gegeben sind Daten x1 = 3, x2 = 6, x3 = 1, x4 = 1, x5 = 4. Die

Rangwerte sind dann: x(1) = 1, x(2) = 1, x(3) = 3, x(4) = 4, x(5) = 6.

2.2.1 Lageparameter

Lageparameter beantworten die Frage ”Wo liegen die Daten?”. Sie geben uns ein

Maß für die zentrale Tendenz der Daten.

Die erste Art von Lageparametern sind die sogenannten Quantile. Quantile teilen

die Daten in gleich große Teile und geben uns Informationen über die Verteilung.
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Definition 2.2.2 (Quantile). Seien x1, . . . , xN ∈ R Beobachtungen. Sei 0 < p < 1.

Das p-Quantil der Daten ist definiert als

x̃p =

x(k), falls pN ̸∈ N und pN < k < pN + 1

1
2
(x(k) + x(k+1)), falls pN = k ∈ N.

Die Idee dieser Definition ist wie folgt: Für 0 < p < 1 ist das p-Quantil x̃p ein

Punkt, so dass p · 100% der Daten kleiner als x̃p sind:

x(1) ≤ . . . ≤ x(k) ≤ x̃p ≤ x(k+1) ≤ . . . ≤ x(N), sodass k ≈ pN .

Quantile werden beispielsweise in der Datenvorverarbeitung verwendet, um Aus-

reißer zu identifizieren und zu behandeln.

Definition 2.2.3 (Median). Das 1
2
-Quantil x̃1/2 heißt Median.

Nach Definition liegen 50% der Daten über dem Median und 50% darunter.

Beispiel 2.2.3. Gegeben seien Daten x1 = 1, x2 = 1, x3 = 4, x4 = 6. Die Rang-

werte sind dann x(1) = 1 ≤ x(2) = 1 ≤ x(3) = 4 ≤ x(4) = 6 Dann ist der Median

dieser Daten x̃1/2 = 2.5.

Jetzt haben zusätzlich x(5) = 10. Dann wird der Median zu x̃1/2 = x(3) = 4.

Definition 2.2.4 (Quartile). Das 1
4
-Quantil heißt unteres Quartil. Das 3

4
-Quantil

heißt oberes Quartil.

Der Median misst das ”Zentrum” der Daten. Eine alternative Definition für eine

Art Zentrum ist der Mittelwert. Der Mittelwert ist der intuitivste Lageparameter,

aber er kann im Gegensatz zum Median eher durch Ausreißer beeinflusst werden.

Definition 2.2.5 (Mittelwert). Seien x1, . . . , xN ∈ R Beobachtungen. Der Mittel-

wert der Daten ist definiert als

x̄ :=
1

N
(x1 + x2 + . . .+ xN).
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Beispiel 2.2.4. Gegeben seien die Daten x1 = 3, x2 = 10, x3 = 1, x4 = 4, x5 = 5.

Dann ist N = 5. Median und Mittelwert sind dann

x̃1/2 = 3, x̄ =
1

5
(3 + 10 + 1 + 4 + 5) =

23

5
= 4.6.

Der Median ist ein robuster Lageparameter, der weniger anfällig für Ausrei-

ßer ist als der Mittelwert. Das folgende Beispiel illustriert, wie Extremwerte den

Mittelwert beeinflussen, während der Median demgegenüber robuster ist.

Beispiel 2.2.5. Angenommen wir haben einen Datensatz, den wir in einem Hi-

stogramm wie folgt darstellen.

Dann ist der Median ungefähr bei x = 0, weil der größte Teil der Daten sich um 0

zentriert. Andererseits ist der Mittelwert sicher größer als 0, da ein kleiner Teil der

Daten bei x = 5000 liegt. In diesem Fall wäre der Median eine bessere Wahl als

Lageparameter.

2.2.2 Streuungsparameter

Streuungsparameter beantworten die Frage ”Wie weit sind die Daten verstreut?”.

Sie geben uns ein Maß für die Variabilität der Daten.

Im Folgenden seien wieder x1, . . . , xN ∈ R Beobachtungen mit zugehörigen

Rangwerten x(1) ≤ . . . ≤ x(N).

Definition 2.2.6 (Spannweite und Quartilsabstand). Wir nennen R = x(N)−x(1)
und Q = x̃3/4 − x̃1/4 die Spannweite und den Quartilsabstand der Daten.
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Definition 2.2.7 (Standardabweichung und Varianz). Die Standardabweichung

der Daten ist definiert als

s =

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2.

Die Varianz der Daten, oder auch Stichprobenvarianz, ist definiert als

s2 =
1

N − 1

N∑
i=1

(xi − x̄)2.

D.h. Varianz und Standardabweichung messen die durchschnittliche quadrierte

Abweichung der Beobachtungen xi zum Mittelwert x̄.

Der Nenner N − 1 in dieser Definition ist kein Schreibfehler. Man normalisiert

mit 1
N−1

anstatt mit 1
N
, damit s ein sogenannter ”unverzerrter Schätzer” wird.

Die Mathematik hinter dieser Aussage geht allerdings über den mathematischen

Inhalt dieser Vorlesung hinaus.

Beispiel 2.2.6. Angenommen wir haben zwei Datensätze, die wir in Histogram-

men wie folgt darstellen.

Da die Daten auf der rechten Seite weiter verstreut sind, ist die Varianz dieses

Datensatzes größer als auf der linken Seite. Eine höhere Varianz kann beispielsweise

dazu führen, dass ein Modell weniger genau ist.

Alle Kennzahlen können in einem Boxplot zusammengefasst werden.
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x̃1/4 x̃1/2 x̃3/4r1 r2x̃3/4

Hierbei ist r1 die kleinste Beobachtung, die größer als x̃1/4− (3/2)Q ist, und r2 die

größte Beobachtung, die kleiner als x̃3/4+(3/2)Q ist (Erinnerung: Q = x̃3/4− x̃1/4

ist der Quartilsabstand). Wir nennen w1 den unteren Whisker und w2 den oberen

Whisker. Das Boxplot ist ein nützliches Werkzeug, um Ausreißer zu identifizieren

und die Verteilung der Daten visuell zu überprüfen.

2.2.3 Übungsaufgaben

Aufgabe 2.2.1. Während einer Geschwindigkeits- und Verkehrskontrolle werden

in einer 70er Zone von 12 Autos die folgenden Daten aufgenommen.

Kennzeichen Anzahl Personen im Auto Geschwindigkeit in km/h

OS 4 75.5

OS 2 68.2

BI 1 65.3

GÖ 5 60.1

MS 1 80.9

BI 2 100.0

MS 3 87.0

OS 1 70.2

OS 2 72.5

HB 1 69.6

B 3 71.4

OS 5 87.1

Die folgenden Aufgaben können Sie per Hand oder mit Hilfe von Julia lösen

(siehe auch Aufgabe 2.2.2).
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(1) Um welche Art von Merkmalen handelt es sich hier?

(2) Erstellen Sie absolute und relative Häufigkeitsverteilungen für jede oben auf-

geführte Merkmal. Verwenden Sie bei der Merkmal Geschwindigkeit eine

Klassenbreite von 10.

(3) Erstellen Sie für die Häufigkeitstabellen aus Teil a) eine passende grafische

Darstellung.

(4) Berechnen Sie Mittelwert, den Median und die Standardabweichung für das

Merkmal Geschwindigkeit.

(5) Erstellen Sie die empirische Verteilungsfunktion für das Merkmal Anzahl Per-

sonen im Auto.

Aufgabe 2.2.2. Lesen Sie die Julia Dokumentationen für

(1) Histogramme:

https://docs.juliaplots.org/latest/series_types/histogram/

(2) Mittelwert:

https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.mean

(3) Median:

https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.median

(4) Standardabweichung:

https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.std

Aufgabe 2.2.3. Diskutieren Sie die Antwort der Bundesregierung auf Frage 4.

der Kleinen Anfrage, welche unter

https://dip21.bundestag.de/dip21/btd/19/221/1922109.pdf

verfügbar ist. Warum fällt die Antwort so aus?
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Aufgabe 2.2.4. In einem Forschungsprojekt wurden zu zwei Zeitpunkten Mes-

sungen einer physikalischen Größe an einer Materialprobe durchgeführt. Für jeden

Messzeitpunkt wurde ein Bild des Messbereichs aufgenommen und ein automati-

sches Erkennungs- bzw. Zählsystem ermittelte, wie viele Defekte (z. B. Mikrorisse)

pro Bildausschnitt vorkamen.

Nach 9.000 Belastungszyklen wurden 54 Bildausschnitte ausgewertet, wobei die

gefundenen Defektzahlen wie folgt sortiert vorliegen:

317 405 528 529 567 604 611 614 624 626 633 642 674 677

691 704 708 714 724 730 750 786 790 790 800 801 805 809

828 836 840 841 850 869 872 876 877 878 883 894 898 928

940 941 942 946 948 949 976 1003 1004 1010 1024 1028

Nach 12.000 Belastungszyklen wurden erneut 5 Bildausschnitte analysiert; die

sortierten Defektzahlen lauten:

463 489 543 561 574 644 688 724 735 768 778 799 800 807

813 832 835 845 847 847 866 871 877 888 892 894 902 903

916 918 918 926 929 929 932 935 947 947 950 953 953 961

962 993 1002 1010 1012 1022 1033 1034 1036 1045 1063 1112

(1) Erstellen Sie in Julia ein DataFrame, welches die Daten enthält.

(2) Erstellen Sie jeweils ein Histogramm für die Daten. Verwenden Sie als Klas-

senbreite 100 und arbeiten Sie auf dem Intervall (300, 1200].

(3) Berechnen Sie Mittelwert und Standardabweichung der beiden Datensätze.

Aufgabe 2.2.5. Installieren Sie das Paket RDatasets und laden Sie es in die

aktuelle Julia Session.

(1) Rufen Sie das airquality Dataset auf:

data = dataset("datasets", "airquality")

(2) Geben Sie das Objekt data im Terminal oder Jupyter-Notebook aus. Was

sehen Sie?

(3) Lesen Sie die Dokumentation des Datensatzes.
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(4) Erklären Sie, was die folgenden Befehle bewirken.

names(data)

propertynames(data)

describe(data)

(5) Visualisieren Sie die Verteilung des Merkmals Wind.

(6) Berechnen Sie Mittelwert, Median, Standardabweichung sowie Quartile des

Merkmals Wind.

2.3 Theorie des Wahrscheinlichkeitsraums

Im ersten Abschnitt haben wir die statistische Grundgesamtheit Ω definiert. Der

Datensatz D war eine Teilmenge von Ω. Es ist wichtig, sich daran zu erinnern, dass

die statistische Grundgesamtheit alle möglichen Datenpunkte umfasst, während

ein Datensatz lediglich eine Stichprobe aus dieser Grundgesamtheit darstellt.

In diesem Abschnitt wollen wir die Wahrscheinlichkeiten von Daten abstrakt de-

finieren. Dazu nennen wir Ω den Ereignisraum. Diese Formalisierung erlaubt uns,

über Wahrscheinlichkeiten unabhängig von spezifischen Experimenten oder kon-

kreten Datensätzen zu sprechen. Man stelle sich den Ereignisraum als die Menge

aller denkbaren Ergebnisse vor. Teilmengen A ⊆ Ω nennen wir Ereignisse. Ein Er-

eignis repräsentiert also eine bestimmte Teilmenge der möglichen Ergebnisse. Ein

Beispiel ist der Würfelwurf, bei dem Ω alle sechs möglichen Augenzahlen umfasst;

ein Ereignis könnte dann das Würfeln einer geraden Zahl sein.

Definition 2.3.1 (Wahrscheinlichkeitsraum). Sei Ω ein Ereignisraum und A eine

Menge von Ereignissen. Ein Wahrscheinlichkeitsmaß ist eine Abbildung

P : A → [0, 1], A 7→ P (A).

mit folgenden Eigenschaften:

(1) P (∅) = 0 und P (Ω) = 1.

(2) P (
⋃∞

i=1Ai) =
∑∞

i=1 P (Ai), falls Ai, A2, . . . paarweise disjunkt.

P (A) heißt dann die Wahrscheinlichkeit von A ∈ A. Das Tripel (Ω,A, P ) heißt

Wahrscheinlichkeitsraum.
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(Bemerkung: Nicht jede Menge A von Ereignissen kann in der Definition gewählt

werden. A muss ein sogenannte σ-Algebra sein.)

Diese Definition kann zunächst abstrakt wirken, ist aber das Fundament der

Wahrscheinlichkeitstheorie und somit auch des maschinellen Lernens. Ω definiert,

was überhaupt passieren kann, A legt fest, welche Ereignisse wir überhaupt messen

können, und P quantifiziert, wie wahrscheinlich ein bestimmtes Ereignis A ∈ A ist.

Die beiden Eigenschaften des Wahrscheinlichkeitsmaßes gewährleisten eine konsi-

stente und logische Berechnung von Wahrscheinlichkeiten. Die erste Eigenschaft

besagt, dass kein Ergebnis die Wahrscheinlichkeit 0 besitzt und das alle Ereignisse

zusammen die Wahrscheinlichkeit von 1 hat. Die zweite Eigenschaft, die Addi-

tivität, erlaubt uns, die Wahrscheinlichkeit komplexer Ereignisse aus den Wahr-

scheinlichkeiten einfacher, disjunkter Ereignisse zu berechnen.

Das nächste Beispiel ist sehr einfach, aber es veranschaulicht deutlich das Kon-

zept eines Wahrscheinlichkeitsraums.

Beispiel 2.3.1. Sei Ω = Menge aller Münzwürfe und X : Ω → {Kopf,Zahl}.
Wir betrachten das Ereignis A = {w ∈ Ω | X(w) = Kopf}. Dann ist P (A) die

Wahrscheinlichkeit Kopf zu werfen.

Im Kontext des maschinellen Lernens verwenden wir Wahrscheinlichkeitsräume,

um Unsicherheit in Daten und Modellen zu modellieren. Wahrscheinlichkeitsräume

bilden auch die Grundlage für generative Modelle wie Large Language Models

(LLM), die die Verteilung der Trainingsdaten erlernen, um neue Daten zu ge-

nerieren.

Wir geben nun noch dre Beispiele spezifischer Wahrscheinlichkeitsräume

Beispiel 2.3.2 (Endlicher/diskreter Wahrscheinlichkeitsraum). Sei (Ω,A, P ) ein

Wahrscheinlichkeitsraum. Falls Ω endlich/diskret ist, nennen wir (Ω,A, P ) endli-

chen/diskreten Wahrscheinlichkeitsraum.

Beispiel 2.3.3 (Gleichverteilung). Sei Ω endlich. Dann heißt das Wahrscheinlich-

keitsmaß P (A) = #A
#Ω

für A ⊆ Ω. (#A = Anzahl Elemente in A) das Maß der

Gleichverteilung auf Ω. Insbesondere gilt für alle w ∈ Ω: P ({w}) = 1
#Ω
.
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Beispiel 2.3.4 (Das Urnenmodell). Die Theorie der Wahrscheinlichkeitsräume

kann auf viele verschiedene Arten veranschaulicht werden. Ein klassisches Beispiel

ist das Urnenmodell.

In einer Urne befinden sich n Kugeln. Das Zufallsexperiment im Urnenmodell

besteht darin, zufällig k Kugeln aus der Urne zu ziehen. Dabei nehmen wir an, dass

jede Kugel die gleiche Wahrscheinlichkeit hat, gezogen zu werden. Dieses Modell

ist ein grundlegendes Werkzeug in der Wahrscheinlichkeitstheorie und dient als

anschauliches Beispiel. Es findet auch Anwendung in verschiedenen Bereichen des

maschinellen Lernens, beispielsweise bei der Bewertung von Stichprobenverfahren

und der Analyse von Algorithmen, die auf zufälliger Auswahl basieren.

Wenn k = 1 Kugel gezogen wird, dann gilt P (”Kugel i wird gezogen”) = 1
n
.

Diese einfache Wahrscheinlichkeit ergibt sich direkt aus der Annahme, dass je-

de Kugel gleich wahrscheinlich gezogen wird. Was passiert aber, wenn wir k > 1

Kugeln ziehen? Hier ergeben sich verschiedene Möglichkeiten, die auf unterschied-

lichen Annahmen über das Zufallsexperiment basieren.

Zwei grundlegende Fragen stellen sich dabei: Ziehen wir die Kugeln mit oder

ohne Zurücklegen? Und ist die Reihenfolge der gezogenen Kugeln von Bedeutung

oder nicht? Diese Fragen führen zu vier verschiedenen Ereignisräumen, die wir im

Folgenden näher betrachten werden. Die Unterscheidung zwischen diesen Fällen ist

wichtig, da sie sich direkt auf die Berechnung der Wahrscheinlichkeiten auswirkt.

Wir benennen die entsprechenden Ereignisräume wie folgt:

mit Reihenfolge ohne Reihenfolge

mit Zurücklegen ΩmZ,mR ΩmZ,oR

ohne Zurücklegen ΩoZ,mR ΩoZ,k,oR

Um die Gleichverteilung auf diesen Ereignisräumen zu berechnen, genügt es, die

Anzahl der Elemente in den jeweiligen Räumen zu bestimmen, da alle Ergebnisse

gleich wahrscheinlich sind.

Mit Zurücklegen, mit Beachtung der Reihenfolge Hier ziehen wir k Kugeln aus

der Urne, wobei wir nach jedem Zug die Kugel wieder zurücklegen. Das bedeutet,

dass bei jedem Zug alle n Kugeln zur Auswahl stehen. Der Ereignisraum kann wie
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folgt modelliert werden.

ΩmZ,mR = {w = (w1, . . . , wk) | 1 ≤ wi ≤ n für alle i}.

Da bei jedem Zug alle n Kugeln gezogen werden können, gilt

#ΩmZ,mR = n · n · · ·n = nk.

Z.B. ist 1
64

= 1
1296

≈ 0.0008 die Wahrscheinlichkeit, 4 Sechsen hintereinander zu

werfen. Dies verdeutlicht, dass die Wahrscheinlichkeit, 4 Sechsen hintereinander

zu werfen, ziemlich klein ist.

Ohne Zurücklegen, mit Beachtung der Reihenfolge In diesem Modell können

wir, wenn wir eine bestimmte Kugel gezogen haben, sie im nächsten Zug nicht

mehr ziehen. Ein Modell für den Ereignisraum ist also

ΩoZ,mR = {w = (w1, . . . , wk) | 1 ≤ wi ≤ n für alle i und wi ̸= wj für i ̸= j}.

Für die Wahl von w1 gibt es n Möglichkeiten, für die Wahl von w2 gibt es n − 1

Möglichkeiten (da w2 ̸= w1) usw. Insgesamt erhalten wir:

#ΩoZ,mR = n · (n− 1) · (n− 2) · · · (n− k + 1) =
n!

(n− k)!
.

Z.B. berechnet sich die Anzahl aller möglicher Bundesligatabellen durch 18 aus

18 Vereinen ohne Zurücklegen zu ziehen, also 18!
(18−18)!

= 6.402.373.705.728.000.

Ohne Zurücklegen, ohne Beachtung der Reihenfolge Ohne Beachtung der

Reihenfolge heißt, dass z.B. w1 = (1, 2) und w2 = (2, 1) als gleich betrachtet wer-

den sollen. Ein mathematisches Konstrukt, in dem die Reihenfolge irrelevant ist,

ist die Menge (im Beispiel also {1, 2}). Wir erhalten folgendes Modell für den

Ereignisraum.

ΩoZ,oR = {w = {w1, . . . , wk} | 1 ≤ wi ≤ n für alle i}.

Wir zählen als Nächstes die Elemente in dieser Menge.
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Wir zählen die Anzahl der Möglichkeiten w1, . . . , wn zu ordnen (n!) und teilen

diese Anzahl dann durch die Anzahl Möglichkeiten die ersten k zu ordnen (k!) und

die letzten n− k zu ordnen ((n− k)!). Insgesamt:

#ΩoZ,oR =
n!

(n− k)! · k!
=

(
n

k

)
.

Anders gesagt:
(
n
k

)
ist die Anzahl der k-elementigen Teilmengen in einer Menge

mit n Elementen.

Z.B. ist die Wahrscheinlichkeit das richtige Los bei “Lottot 6 aus 49” zu ziehen

gleich
(
49
6

)
= 13.983.816.

Mit Zurücklegen, ohne Beachtung der Reihenfolge In diesem Modell können

wir Kugeln mehrfach ziehen (da mit Zurücklegen), aber die Reihenfolge soll nicht

beachtet werden. Wir haben folgendes Modell für den Ereignisraum.

ΩmZ,oR = {w = (w1, . . . , wk) | 1 ≤ wi ≤ n für alle i und w1 + · · ·+ wn = k}.

Dabei misst wi wie oft wir Kugel i gezogen haben.

Um die Anzahl der Elemente in ΩmZ,oR zu zählen, können wir jedem w ∈ ΩmZ,oR

genau ein Diagramm zuordnen. für w = (w1, . . . , wk) erstellen wir ein Diagramm

der Form

· · · · · · | · · · | · · · · · · · · · | · · · ,

wobei im i-ten Abschnitt genau wi Punkte zu sehen sein sollen. Z.B. ist das Dia-

gramm, das wir w = (2, 4, 1) zuordnen, wie folgt: · · | · · · ·|·. Die Anzahl der

Elemente in ΩmZ,oR ist also die Anzahl solcher Diagramme. Jedes Diagramm be-

steht aus n+ k − 1 Symbolen (k Punkte, und n− 1 Striche). D.h. die Anzahl der

Diagramm ist gleich der Anzahl Möglichkeiten aus n+k−1 Symbolen n−1 Striche

zu ziehen. Dies ist gleich der Anzahl der (n− 1)-elementigen Teilmengen in einer

n+ k − 1 elementigen Menge. Daher:

#ΩmZ,oR =

(
n+ k − 1

n− 1

)
.
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2.3.1 Frequentistischer vs. Bayes’scher

Wahrscheinlichkeitsbegriff

Es gibt nun zwei grundlegend unterschiedliche Perspektiven darauf, wie die Defini-

tion eines Wahrscheinlichkeitsraumes die Verteilung reeller Daten modelliert. Diese

beiden Perspektiven prägen unser Verständnis von Wahrscheinlichkeit und haben

weitreichende Konsequenzen für die Art und Weise, wie wir statistische Schlüsse

ziehen und Modelle erstellen.

• Sei fn die relative Häufigkeit des Ereignisses A in n unabhängigen Zufalls-

experimenten. Dann ist P (A) = limn→∞ fn, vorausgesetzt dieser Grenzwert

existiert. Das bedeutet, dass die Wahrscheinlichkeit eines Ereignisses defi-

niert wird als der Wert, den die relative Häufigkeit des Ereignisses annimmt,

wenn das Experiment unendlich oft wiederholt wird. Diese Perspektive wird

als frequentistischer Wahrscheinlichkeitsbegriff bezeichnet. Ein zentrales Ele-

ment ist hier die Annahme, dass es eine ”wahre” Wahrscheinlichkeit gibt, die

durch die langfristige Wiederholung des Experiments approximiert werden

kann.

• Der Bayes’sche Wahrscheinlichkeitsbegriff definiert P (A) als Erfahrungs-

wert, nicht als Grenzwert einer Häufigkeit. Insbesondere ist es mit dem

Bayes’schen Wahrscheinlichkeitsbegriff möglich, unvollständige Information

über deterministische Prozesse auf Wahrscheinlichkeitsraum zu modellieren.

Der frequentistische und der Bayes’sche Wahrscheinlichkeitsbegriff stellen also zwei

unterschiedliche Denkweisen dar, wie wir mit Unsicherheit umgehen. Der frequen-

tistische Ansatz versteht Wahrscheinlichkeit als die langfristige relative Häufigkeit

eines Ereignisses, also als objektives Merkmal einer wiederholbaren Situation. Es

geht darum, wie oft etwas in unendlich vielen Versuchen passieren würde, wenn

die Bedingungen konstant bleiben. Diese Perspektive ist eng mit der Idee verbun-

den, dass Wahrscheinlichkeiten Eigenschaften der Welt sind, die unabhängig von

unserem Wissen existieren. Im Gegensatz dazu betrachtet der Bayes’sche Ansatz

Wahrscheinlichkeit als ein Maß für unsere persönliche Erwartung an das Eintre-

ten eines Ereignisses, basierend auf Vorwissen. Hier ist Wahrscheinlichkeit sub-

jektiv und wird durch den Beobachter festgelegt. Es ist wichtig zu betonen, dass

”subjektiv” hier nicht willkürlich bedeutet; der Bayes’sche Ansatz erfordert eine

Aktualisierung der Erwartung angesichts neuer Daten. Kurz gesagt: Der frequen-
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tistische Ansatz fragt ”Wie oft würde das passieren?”, der Bayes’sche Ansatz fragt

”Wie wahrscheinlich halte ich das?”. Die beiden Fragen zielen auf unterschiedliche

Aspekte der Unsicherheit ab.

Im Kontext des maschinellen Lernens ist die Bayes’sche Perspektive häufig die

natürlichere. Viele Probleme im maschinellen Lernen beinhalten Unsicherheit, sei

es aufgrund unvollständiger Daten oder inhärenter Zufälligkeit. Hier werden Wahr-

scheinlichkeiten verwendet, um Vorhersagen zu treffen und Unsicherheit zu quan-

tifizieren. Zum Beispiel könnte ein maschinell gelerntes Modell als Antwort auf die

Frage, was auf dem ersten Bild in Beispiel 2.1.3 zu sehen ist, antworten: ”Zu 80%

ist das eine Sandale.” Diese 80% geben die Wahrscheinlichkeit an, basierend auf

den gelernten Daten, dass das Bild tatsächlich eine Sandale zeigt. Diese Wahr-

scheinlichkeit ist nicht als die Häufigkeit zu interpretieren, mit der das Modell

Sandalen in Trainingsdaten gesehen hat, sondern als ein Ausdruck der Erwartung

des Modells, basierend auf seinem gelernten Wissen.

Ein weiterer wichtiger Unterschied liegt in der Art und Weise, wie mit neuen

Informationen umgegangen wird. Wie erwähnt, können Wahrscheinlichkeiten im

Bayes’sche Ansatz im Kontext sich aktualisierender Datenlage aktualisiert werden.

Diese Fähigkeit ist besonders wertvoll in Szenarien, in denen die Daten begrenzt

oder unvollständig sind.

2.3.2 Venn-Diagramme

Wir fahren fort mit Eigenschaften, die Wahrscheinlichkeiten erfüllen.

Satz 2.3.1 (Eigenschaften von Wahrscheinlichkeitsräumen). Sei (Ω,A, P ) ein

Wahrscheinlichkeitsraum und A,B,C,D Ereignisse.

(1) P (Ω \ A) = 1− P (A)

(2) P (A∪B) = P (A)+P (B)−P (A∩B) und P (A∩B) = P (A)+P (B)−P (A∪B)

(3) A ⊆ B ⇒ P (A) ≤ P (B)

(4) Siebformel:

P (A ∪B ∪ C) = P (A) + P (B) + P (C)

− P (A ∩B)− P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C).
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Die Eigenschaften, die in diesem Satz aufgelistet werden, sind grundlegend für

das Verständnis von Wahrscheinlichkeiten und werden in vielen Bereichen der

Mathematik und Statistik angewendet. Beispielsweise hilft die erste Eigenschaft,

die Wahrscheinlichkeit des Komplements eines Ereignisses zu berechnen, also die

Wahrscheinlichkeit, dass ein Ereignis nicht eintritt. Die zweite Eigenschaft, die Ad-

ditionsregel für Wahrscheinlichkeiten, berechnet die Wahrscheinlichkeit der Verei-

nigung zweier Ereignisse. Die dritte Eigenschaft drückt aus, dass die Wahrschein-

lichkeit eines Teilereignisses niemals größer sein kann als die Wahrscheinlichkeit

des Gesamtereignisses. Die Siebformel erweitert die Additionsregel auf drei Ereig-

nisse und verdeutlicht die zunehmende Komplexität bei der Betrachtung mehrerer

Ereignisse gleichzeitig.

Die Aussagen des Satzes lassen sich mit Hilfe von Venn-Diagrammen nach-

vollziehen. Hierbei wird jedes Ereignis durch eine Kreisscheibe dargestellt und

Überschneidungen visualisieren die Schnittmengen.

Das Venn-Diagramm für P (A∪B) illustriert, wie die Vereinigung der Ereignisse

A und B berechnet wird: Man addiert die Inhalte von A und B und subtrahiert

den Schnittbereich A ∩B, um eine doppelte Zählung zu vermeiden:

A ∩BA B

P (A ∪B) = P (A) + P (B)− P (A ∩B)

Die Siebformel lässt sich ebenfalls durch ein Venn-Diagramm visualisieren.

A B

C

P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (A ∩B)

−P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C)
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2.3.3 Übungsaufgaben

Aufgabe 2.3.1. Bei einer Befragung unter den Studierenden einer Universität

bezeichne A das Ereignis, dass ein:e zufällig ausgewählte:r Studierende:r eine be-

stimmte Wahlpflichtfach-Gruppe wählt, und B sei das Ereignis, dass ein:e zufällig

ausgewählte:r Studierende:r einen Sprachkurs belegt.

(1) Beschreiben Sie die folgenden Ereignisse mit Worten:

A ∪B, A ∩B, Ac, B \ A, A ∪Bc, Ac ∪Bc, Ac ∩Bc

Hinweis: Hierbei bezeichnet Ac das Komplement von A; d.h., Ac = {x ∈ Ω |
x ̸∈ A}.

(2) Es seien P (A) = 0.3, P (B) = 0.5 und P (A ∩ B) = 0.1 bekannt. Berechnen

Sie die Wahrscheinlichkeiten der oben angegebenen Ereignisse.

Aufgabe 2.3.2. In einem Klasse befinden sich 18 Schüler:innen. Davon haben 7

an einem bestimmten Projekttag teilgenommen. Es wird nun zufällig eine Gruppe

von 4 Schüler:innen ausgewählt.

(1) Berechnen Sie die Anzahl aller möglichen Gruppen.

(2) Berechnen Sie für jedes k ∈ {0, . . . , 4} die Wahrscheinlichkeit, dass in der

Gruppe genau k Schüler:innen am Projekttag teilgenommen haben.

Aufgabe 2.3.3. Wie hoch ist die Wahrscheinlichkeit, dass in einer Gruppe von k

Personen zwei Personen am gleichen Tag Geburtstag haben? Diese Fragestellung

heißt Geburtstagsparadoxon, da es eine unerwartete Antwort hat. Wir nehmen an,

dass die Wahrscheinlichkeiten, dass Person i an einen bestimmten Tag Geburtstag

hat, gleichverteilt sind. D.h.

P ( Person i hat am Tag x Geburtstag) =
1

365
.

Wie hoch ist die Wahrscheinlichkeit für k = 23?
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Aufgabe 2.3.4. Aus einem Kartenspiel mit 5 weißen, 7 schwarzen und 3 roten

Karten werden 3 Karten gezogen. Berechnen Sie die Wahrscheinlichkeit dafür,

dass mindestens 2 weiße Karten gezogen wurden, wenn ohne Zurücklegen gezogen

wurde.

Aufgabe 2.3.5. In einem Interview auf einen Youtube-News Kanal (Minuten

5:00–5:14) wird berichtet, dass das RKI im März 2020 günstigstenfalls 300.000

Tote, aber bis zu 1.5 Millionen Tote durch die Covid-19 Pandemie prognostizierte.

Diese Aussage bezieht sich auf Abbildung 8 im RKI Bericht zur Modellierung von

Beispielszenarien der SARS-CoV-2-Epidemie 2020 in Deutschland. Vergleichen Sie

die Aussage mit den Diagrammen in Abbildung 8.

Aufgabe 2.3.6. Definieren Sie in Julia den Vektor

x = [1 2 3 4]

(1) Was ist der Unterschied zwischen x und vec(x)?

(2) Erklären Sie die Bedeutung der folgenden Befehle.

y = vec(x)

reshape(y, 1, 4)

reshape(y, 2, 2)

[y_i^2 for y_i in y]

map(sqrt , y)

sqrt.(y)

(3) Was macht der folgende Code?

z = 0

for y_i in y

z = z + y_i

end

z

(4) Vergleichen Sie das Ergebnis aus (c) mit sum(y).
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(5) Wir definieren folgende Funktion:

function f(n::Int)

if n <= 0

@warn "Input $n muss positiv sein."

return nothing

elseif n == 1

return n

else

return n * f(n-1)

end

end

Was berechnet f? Welche Rolle spielt die Deklaration ”n::Int”?

2.4 Zufallsvariablen

Zufallsvariablen sind die Entsprechung der Merkmale (Definition 2.1.2) in der

Wahrscheinlichkeitstheorie. Sie ermöglichen es uns, Information über Ereignisse

als Zahlen darzustellen und somit mathematisch zu analysieren. Im Kontext des

maschinellen Lernens repräsentieren Zufallsvariablen die Merkmale, deren Werte

von Daten beeinflusst werden und somit Unsicherheit beinhalten.

Definition 2.4.1. Sei (Ω,A, P ) ein Wahrscheinlichkeitsraum. Eine Zufallsvariable

ist eine Abbildung

X : Ω → W,

wobei W ⊆ Rn der Wertebereich/Stichprobenraum ist. Die Zufallsvariable muss

{ω ∈ Ω | X(ω)i ≤ wi, i = 1, . . . , n} ∈ A für alle w ∈ Rn erfüllen.

Der letzte Teil der Definition stellt sicher, dass die AbbildungX messbar ist, d.h.

dass wir Wahrscheinlichkeiten für Ereignisse der Form X ≤ w berechnen können

und ist essentiell für eine korrekte mathematische Behandlung.

Insbesondere umfasst Definition 2.4.1 auch multivariate Merkmale, wie wir sie

in Definition 2.1.4 beschrieben haben. Die meisten der folgenden Beispiele sind

univariate Zufallsvariablen (n = 1). Allerdings wird der Fall n > 1 im folgenden

Kapitel über das maschinelle Lernen wichtig.
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Beispiel 2.4.1. Ω = {(w1, w2) | 1 ≤ w1, w2 ≤ 6}, der Ereignisraum für den

zweifachen Würfelwurf. Die Summe der gewürfelten Zahlen wird durch X : Ω → R
mit X(w1, w2) = w1 + w2 angegeben.

Dieses Beispiel verdeutlicht, wie eine Zufallsvariable einem zufälligen Ereignis

(die Summe der gewürfelten Zahlen) eine numerische Darstellung zuordnet. Die

Summe der Augenzahlen ist eine Zufallsvariable, die Werte zwischen 2 und 12

annehmen kann.

Im Folgenden schreiben wir

P (X ∈ A) := P ({ω ∈ Ω | X(ω) ∈ A}).

Die Abbildung, die A ⊂ W auf P (X ∈ A) abbildet, nennen wir Verteilungsfunk-

tion der Zufallsvariable X. Sie beschreibt, wie die Wahrscheinlichkeit über die

möglichen Werte der Zufallsvariable verteilt ist. Ist a ∈ W , so schreiben wir auch

P (X = a) := P ({ω ∈ Ω | X(ω) = a}).

Eine weitere Möglichkeit die Verteilung anzugeben ist es, die kumulative Vertei-

lungsfunktion

F (x) := P ({ω ∈ Ω | X(ω)i ≤ xi, i = 1, . . . , n})

zu berechnen.

Beispiel 2.4.2. Für den zweifachen (fairen) Münzwurf sei X die Anzahl der ge-

worfenen Zahlen. Die Verteilung von X ist

P (X = 1) = P ({(K,Z), (Z,K)}) = 1

2
und

P (X = 2) = P ({(Z,Z)}) = 1

4
,

P (X = 0) = P ({(K,K)}) = 1

4

Dieses Beispiel zeigt die Wahrscheinlichkeitsverteilung einer Zufallsvariablen, die

endlich viele Werte annehmen kann. Eine solche Zufallsvariable nennen wir daher

auch endliche Zufallsvariable.
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Im Folgenden beschreiben wir wichtige diskrete Zufallsvariablen.

Definition 2.4.2. (Endlich/diskret Zufallsvariable) Eine Zufallsvariable X heißt

endlich/diskret, wenn X(Ω) endlich/diskret ist.

Gleichverteilung Für den Wertebereich W = {1, . . . , n} ist die Gleichverteilung

gegeben durch

P (X = i) =
1

n
.

Notation: X ∼ Unif({1, . . . , n}).

Binomialverteilung Für den Wertebereich W = {1, . . . , n} ist die Binomialver-

teilung mit Parameter p ∈ [0, 1] gegeben durch

P (X = k) =

(
n

k

)
· pk · (1− p)n−k.

P (X = k) ist die Wahrscheinlichkeit aus n unabhängigen (siehe Abschnitt 2.5.1)

Bernoulli-Experimenten k Erfolge zu erzielen. Wir schreiben X ∼ Bin(n, p)

Geometrische Verteilung Für den Wertebereich W = {1, 2, 3, . . .} ist die geo-

metrische Verteilung mit Parameter p ∈ [0, 1] gegeben durch

P (X = k) = (1− p)k−1 · p.

Hierbei ist X die Anzahl der Versuche von unabhängigen (siehe Abschnitt 2.5.1)

Bernoulli-Experimenten mit Erfolgswahrscheinlichkeit p, bis zum ersten Mal ein

Erfolg eintritt. Wir schreiben X ∼ Geom(p).

Als nächstes geben wir wichtige stetige Zufallsvariablen an.

Definition 2.4.3. Sei X eine Zufallsvariable. Dann nennen wir X stetig, falls

X(Ω) ⊆ Rn einen kontinuierlichen (stetigen) Bereich enthält.

Die folgende Definition beinhaltet Integrale in Rn. Die Theorie hinter solchen

multivariaten Integralen ist nicht einfach und führt über den Inhalt dieses Ab-

schnitts hinaus. Es reicht aus, sich vorzustellen, dass multivariate Integrale eine

Art “Volumen” in höhreren Dimensionen berechnen.
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Definition 2.4.4. (Dichte) Sei X ∈ Rn eine stetige Zufallsvariable und sei wei-

terhin f : Rn → [0,∞) eine integrierbare Funktion, sodass
∫
Rn f(x) dx = 1. Dann

nennen wir f eine Dichte von X, falls

P (X ∈ A) =

∫
A

f(x) dx.

Bemerkung: Nicht alle stetigen Zufallsvariablen haben Dichten. Im Folgenden

beschränken wir uns auf Zufallsvariablen mit Dichten. Stetige Zufallsvariablen

können nur kontinuierlichen Bereichen positive Wahrscheinlichkeiten zuordnen,

nicht aber einzelnen Punkten.

Gleichverteilung Eine ZufallsvariableX hat die Gleichverteilung auf [a, b], wennX

die Dichte

f(x) =

 1
b−a

falls x ∈ [a, b]

0 sonst

hat. Wir schreiben: X ∼ Unif([a, b]).

Normalverteilung Eine Zufallsvariable X hat die Normalverteilung auf mit Pa-

rametern µ ∈ R, σ2 > 0, wenn X die folgende Dichte hat:

f(x) =
1√
2πσ2

· e−
(x−µ)2

2σ2 .

Wir schreiben X ∼ N(µ, σ2). Falls X ∼ N(0, 1), heißt X standardnormalverteilt.

2.4.1 Erwartungswert und Varianz

Wie die Lage- und Streuungsparameter im ersten Abschnitt geben Erwartungswert

und Varianz einer Zufallsvariable an, wo die Zufallsvariable zu erwarten ist und

wie weit sie streut. Der Erwartungswert kann als der Durchschnittswert der Zu-

fallsvariablen interpretiert werden, während die Varianz ein Maß für die Streuung

der Werte um den Erwartungswert darstellt.

Im Folgenden sei X ∈ R eine univariate Zufallsvariable.
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Definition 2.4.5. Sei X eine endliche oder diskrete Zufallsvariable. Der Erwar-

tungswert von X ist

E(X) :=
∑
a∈W

a · P (X = a).

Ist X eine stetige Zufallsvariable mit Dichte f(x), so ist der Erwartungswert

E(X) :=

∫ ∞

−∞
x · f(x) dx.

Der Erwartungswert ist ein Maß für die zentrale Tendenz einer Zufallsvaria-

blen. Er gibt an, welcher Wert im Durchschnitt zu erwarten ist, wenn man das

Experiment wiederholt. Es ist wichtig zu betonen, dass der Erwartungswert nicht

unbedingt ein Wert sein muss, der tatsächlich von der Zufallsvariablen angenom-

men werden kann.

Das folgende Beispiel zeigt, wie der Erwartungswert für eine geometrische Ver-

teilung berechnet werden kann (die geometrische Verteilung beschreibt die Anzahl

der Versuche, die benötigt werden, bis ein Erfolg eintritt, und der Erwartungswert

gibt an, wie viele Versuche im Durchschnitt benötigt werden).

Beispiel 2.4.3. Sei X ∼ Geo(p). Dann ist

E(X) =
∞∑
k=1

k · P (X = k) =
∞∑
k=1

k · (1− p)k−1 · p = p · d

dp

(
−

∞∑
k=0

(1− p)k
)
=

1

p
.

Dabei haben wir die Formel
∑∞

k=0(1− p)k = 1/(1− (1− p)) = 1/p verwendet.

Als nächstes listen wir einige Eigenschaften des Erwartungswertes. Diese Eigen-

schaften sind grundlegend für die Berechnung von Erwartungswerten.

Satz 2.4.1. (Linearität von Erwartungswerten) Seien X, Y Zufallsvariablen. Dann:

E(aX + bY + c) = a · E(X) + b · E(Y ) + c, a, b, c ∈ R.

Wir illustrieren im nächsten Beispiel wie die Additivitätseigenschaft des Er-

wartungswertes (E(X + Y ) = E(X) + E(Y )) verwendet werden kann, um den

Erwartungswert einer komplexen Zufallsvariable zu berechnen.
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Beispiel 2.4.4. (Pokémon - Sammelkarten) Wie viele Pokémon-Karten muss ein:e

Sammler:in im Mittel kaufen, um eine Serie von n = 150 Karten zu erhalten?

Um diese Frage zu beantworten treffen wir zwei (nicht realistische) Annahmen:

(1) Die Karten werden einzeln gekauft; (2) Jede Karte hat die gleiche Wahr-

scheinlichkeit gezogen zu werden. Die allgemeine Form dieses Problems wurde

bereits 1930 von Pólya beschrieben. [21]. In unserem Fall ist der Ereignisraum

Ω = {(w1, w2, w3, . . .) | 1 ≤ wi ≤ n}, wobei wn die Karte angibt, die im n-ten

Schritt erworben wurde.

Wir definieren

Xi := Anzahl Karten die gekauft werden müssen, um eine neue Karte zu

erhalten, nachdem bereits (i− 1) verschiedene Karten gezogen wurden.

Mit Hilfe des Urnenmodells erhalten wir

P (Xi = k) =

(
i− 1

n

)k−1

· n− (i− 1)

n
;

d.h. X ist geometrisch verteilt mit Parameter p = n−(i−1)
n

.

Die Zufallsvariable X := X1 +X2 + · · · +Xn gibt dann die Anzahl der Karten

an, die gezogen werden müssen, um alle n Karten zu bekommen. Es gilt daher

E(X) = E(X1 + · · ·+Xn) = E(X1) + · · ·+ E(Xn)

=
n∑

i=1

n

n− i+ 1
, (nach Beispiel 2.4.3)

=
n

1
+
n

2
+ · · ·+ n

n
= n ·

n∑
i=1

1

i
=: n ·Hn.

Für n = 150 haben wir Hn = 5.6. D.h. man muss 5.6 mal mehr Karten kaufen, als

es Karten insgesamt gibt, um alle n = 150 zu sammeln.

Als nächstes definieren wir die Varianz einer Zufallsvariablen. Die Varianz ist

ein Maß für die Streuung der Werte einer Zufallsvariablen um ihren Erwartungs-

wert. Eine hohe Varianz deutet auf eine große Streuung hin, während eine niedrige

Varianz auf eine geringe Streuung hinweist.
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Definition 2.4.6. Die Varianz einer Zufallsvariable X ist definiert als

Var(X) := E([X − E(X)]2).

Die Standardabweichung von X ist
√
Var(X).

Beispiel 2.4.5. Sei X ∼ N(µ, σ2). Dann ist E(X) = µ, Var(X) = σ2 und die

Standardabweichung von X ist σ.

2.4.2 Übungsaufgaben

Aufgabe 2.4.1. Sei X eine diskrete Zufallsvariable mit Werten N. Die Vertei-

lungsfunktion F der Zufallsvariablen X sei folgendermaßen gegeben:

F (x) =

0, für x < 1

1− 1
k
, für x ∈ [k, k + 1), k ∈ N, k ≥ 1.

(1) Bestimmen Sie folgende Wahrscheinlichkeiten

P (X < 2), P (X ≤ 2), P (X ≤ 3), P (X > 3)

(2) Geben Sie die Wahrscheinlichkeiten P (X = k), k ∈ N an.

Aufgabe 2.4.2. Eine Klausur hat 4 Aufgaben. Die Zufallsvariable X gibt an,

wieviele Aufgaben ein:e zufällig ausgewählte:r Schüler:in richtig gelöst hat. X kann

also die Werte 0, 1, 2, 3 oder 4 annehmen. Wir nehmen dabei an, dass jeder Wert

mit gleicher Wahrscheinlichkeit angenommen werden kann.

(1) Bestimmen Sie die Wahrscheinlichkeitsfunktion P (X = x) und die Vertei-

lungsfunktion F (x) von X.

(2) Berechnen Sie den Erwartungswert von X.

(3) Berechnen Sie die Varianz von X mittels der Formeln:

(a) Var(X) = E
(
(X − E(X))2

)
; (b) Var(X) = E(X2)− (E(X))2.
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Aufgabe 2.4.3. Für diese Aufgaben sollten Sie in Julia die Pakete DataFrames,

Plots und RDatasets installiert haben.

Rufen Sie den survey Datensatz auf:

survey = dataset("MASS", "survey")

Dieser Datensatz beinhaltet die Antworten von 237 Statistik Studierenden der

University of Adelaide zu einigen Fragen. Die Antworten sind, u.A., unter den

folgenden Abkürzungen eingetragen.

Wr.Hnd: Spannweite der Schreibhand in cm.

Pulse: Puls der Studierenden.

Smoke: Ob die Studierenden rauchen (Heavy, Regul (regularly), Occas (occasional-

ly), Never).

Height: Größe der Studierenden in cm.

(1) Erklären Sie, was die folgenden Befehle bewirken.

names(survey)

describe(survey)

Insbesondere, was beschreibt die letzte Spalte von describe(survey)?

(2) Veranschaulichen Sie in einer Grafik gleichzeitig (1) die Verteilung der Körpergröße

der Studierenden und (2) die Verteilung der Körpergröße gegeben Smoke.

(3) Veranschaulichen Sie grafisch das multivariate Merkmal (Wr.Hnd, Pulse).

(4) Die empirische Korrelation der Daten (x1, y1), . . . , (xN , yN) zweier Merkmale

X und Y ist gegeben durch

Cor =

∑N
i=1(xi − x̄)(yi − ȳ)√

(
∑N

i=1(xi − x̄)2) · (
∑N

i=1(yi − ȳ)2)
.

Die Korrelation ist ein reeller Wert zwischen −1 und 1. Ist die Korrelation

positiv, dann gehen kleine Werte der einen Variable überwiegend einher mit

kleinen Werten der anderen Variable und gleichfalls für große Werte. Für

eine negative Korrelation ist das genau umgekehrt.

Berechnen Sie die Korrelation der Merkmale aus Aufgabenteil (c) und beur-

teilen Sie das Ergebnis.
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2.5 Der Satz von Bayes

Im maschinellen Lernen wollen wir bei sich ändernder Datenlage verstehen, wie sich

Wahrscheinlichkeiten verändern. Die zentrale Frage in diesem Abschnitt ist: Ange-

nommen, wir haben zwei Ereignisse A und B. Wenn wir wissen, dass B eingetre-

ten ist oder eintreten wird, wie ändert sich die Wahrscheinlichkeit, dass A eintritt?

Wir nennen dies auch die Wahrscheinlichkeit von A gegeben B und schreiben dafür

P (A | B). Die Wahrscheinlichkeit heißt auch bedingte Wahrscheinlichkeit. Dieses

Konzept ist grundlegend, um Schlussfolgerungen aus Daten zu ziehen und Modelle

an neue Informationen anzupassen. Hier ist ein Venn-Diagramm der Situation:

A ∩BA B

Definition 2.5.1. Sei (Ω,A, P ) ein Wahrscheinlichkeitsraum und seien A,B ∈ A

mit P (B) > 0. Dann ist

P (A | B) :=
P (A ∩B)

P (B)

die bedingte Wahrscheinlichkeit von A gegeben B.

Die bedingte Wahrscheinlichkeit kann unsere Einschätzung der Wahrscheinlich-

keit eines Ereignisses auf der Grundlage neuer Informationen ändern. Die Bedin-

gung P (B) > 0 ist wichtig, um eine Division durch Null zu vermeiden. Wir geben

auch eine Definition von bedingten Dichten.

Definition 2.5.2. Es sei (X, Y ) ∈ Rn ×Rm eine Zufallsvariable mit Dichte f(X,Y )

und x ∈ Rn. Angenommen X hat Dichte fX . Die bedingte Dichte von Y gegeben

X = x ist

fY |X=x(y) =
f(X,Y )(x, y)

fX(x)
.

Wir schreiben (Y | X = x) für die Zufallsvariable mit dieser Dichte und nennen

sie Y gegeben X = x.
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Beispiel 2.5.1. Würfelwurf: Ω = {1, 2, 3, 4, 5, 6}, A = {2} (= ein Zwei wird

gewürfelt) und B = {2, 4, 6} (= eine gerade Zahl wurde gewürfelt). Dann gilt:

P (A | B) =
P (A ∩B)

P (B)
=

1/6

3/6
=

1

3

und P (A) = 1/6. D.h. falls wir wissen, dass eine gerade Zahl gewürfelt wird, wissen

wir, dass wir eher eine 2 werfen, als wenn wir diese Information nicht hätten.

Dieser einfache Würfelwurf verdeutlicht, wie die bedingte Wahrscheinlichkeit

unsere ursprüngliche Einschätzung der Wahrscheinlichkeit verändert, wenn wir

zusätzliche Informationen erhalten.

Der Bayes’sche Wahrscheinlichkeitsbegriff hat seinen Namen aus folgendem Satz.

Satz 2.5.1. (Satz von Bayes’) Sei (Ω,A, P ) ein Wahrscheinlichkeitsraum und

A,B ∈ A. Dann gilt:

P (A | B) =
P (B | A) · P (A)

P (B)
.

Der Satz von Bayes stellt eine fundamentale Beziehung zwischen der Wahr-

scheinlichkeit von A gegeben B und der Wahrscheinlichkeit von B gegeben A her.

In Anwendungen des maschinellen Lernens ist oft B das Auftreten neuer Daten

und A sind die Parameter eines Modells. Um zu beurteilen, ob die Parameter im

Rahmen der neuen Datenlage gut gewählt sind, können wir mit Hilfe des Sat-

zes von Bayes die Rollen von A und B vertauschen und die Wahrscheinlichkeit

der Daten B gegeben die Parameter A optimieren. Dies ist die Grundlage vieler

Bayes’scher Lernverfahren.

Weiterhin erhalten wir

P (A | B)

P (A)
=
P (B | A)
P (B)

.

D.h., falls B das Auftreten von A wahrscheinlicher macht (P (A|B)
P (A)

> 1), dann

macht auch A das Auftreten von B wahrscheinlicher. Dieses Verhältnis wird auch

als Likelihood-Ratio bezeichnet.

Es gibt auch einen Satz von Bayes für Zufallsvariablen mit Dichten.
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Definition 2.5.3. (Satz von Bayes’ für Dichten) Seien X ∈ Rn und Y ∈ Rm

Zufallsvariablen mit Dichten fX und fY . Zudem bezeichne fY |X=x die Dichte von Y

gegeben X = x. Dann gilt

fY |X=x(y) = fX|Y=y(x) ·
fY (y)

fX(x)
.

2.5.1 Stochastische Unabhängigkeit

Als Nächstes diskutieren wir das Konzept der stochastischen Unabhängigkeit. Zwei

Ereignisse A,B sollen unabhängig sein, wenn das Ereignis B die Wahrscheinlichkeit

von A nicht beeinflusst; d.h. P (A | B) = P (A).

Definition 2.5.4. Sei (Ω,A, P ) ein Wahrscheinlichkeitsraum und A,B ∈ A. Dann

nennen wir A und B stochastisch unabhängig, wenn

P (A | B) = P (A).

Da P (A | B) = P (A∩B)
P (B)

, gilt stochastische Unabhängigkeit von A und B genau

dann, wenn

P (A ∩B) = P (A) · P (B).

Wenn Ereignisse unabhängig sind, können wir die Wahrscheinlichkeit ihres ge-

meinsamen Eintretens einfach als das Produkt ihrer individuellen Wahrscheinlich-

keiten berechnen.

Beispiel 2.5.2. 2-facher Würfelwurf: Ω = {(w1, w2) | 1 ≤ w1, w2 ≤ 6} und

A = {im ersten Wurf eine 2}, B = {im zweiten Wurf eine 2} Falls die Würfe un-

abhängig sind, dann sind A und B stochastisch unabhängig. Dann gilt

P{es werden 2 Zweien geworfen} = P (A ∩B)

= P (A) · P (B)

=
1

6
· 1
6
=

1

36
.

Wir erweitern die Definition auf mehr als zwei Ereignisse.
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Definition 2.5.5. Sei (Ω,A, P ) ein Wahrscheinlichkeitsraum und A1, . . . , An ∈ A

Ereignisse. Dann heißen die Ai

(1) paarweise (stochastisch) unabhängig, falls P (Ai ∩ Aj) = P (Ai) · P (Aj) für

alle i ̸= j gilt.

(2) gemeinsam (stochastisch) unabhängig, falls

P (A1 ∩ . . . ∩ Ak) =
k∏

i=1

P (Ai)

für alle Wahlen von Indizes 1 ≤ i1 < · · · < ik ≤ n.

(Es gilt: (2) impliziert (1), aber im Allgemeinen gilt die Rückrichtung nicht).

Beispiel 2.5.3. Ein zentrales Beispiel im Kontext von Unabhängigkeit ist die

Binomialverteilung. Hierbei modellieren wir n unabhängige Zufallsexperimente

w1, . . . , wn mit Ausgang in {0, 1}. D.h., wi = 0 oder wi = 1. Für die Binomi-

alverteilung nimmt man an, dass P ({wi = 0}) = p und P ({wi = 1}) = 1− p, dass

also die Wahrscheinlichkeit, dass 0 eintritt, für alle Experimente gleich ist. Wegen

der stochastischen Unabhängigkeit gilt dann

P ((w1, . . . , wn)) = pk · (1− p)n−k, k = #{i | wi = 0}.

Insbesondere gilt:

P ({genau k der wi sind 0}) =
(
n

k

)
· pk · (1− p)n−k,

da
(
n
k

)
die Anzahl der k-elementigen Teilmengen in einer Menge mit n Elementen

angibt. Diese Verteilung nennen wir die Binomialverteilung.

Die Definition von Unabhängigkeit überträgt sich direkt auf Zufallsvariablen.

Definition 2.5.6. Die ZufallsvariablenX1, . . . , Xn heißen (stochastisch) unabhängig,

falls für alle Intervalle A1, . . . , An ⊆ W gilt:

P (X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An) =
n∏

i=1

P (Xi ∈ Ai).
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2.5.2 Übungsaufgaben

Aufgabe 2.5.1. Ein E-Mail-Anbieter möchte zum Schutz seiner Kund:innen einen

Spam-Filter anbieten. Es gibt zwei Merkmale (Merkmal 1 und Merkmal 2), mit

denen Spam-Mail identifiziert werden. Damit können die Mails in drei Gruppen

eingeteilt werden:

. Gruppe 1: Mails mit Merkmal 1

. Gruppe 2: Mails mit Merkmal 2 und ohne Merkmal 1

. Gruppe 3: Mails ohne die Merkmale 1 und 2

(d.h. in Gruppe 1 sind sowohl die Mails mit Merkmal 1 und nicht 2, als auch die

mit 1 und 2).

Die Anteile der drei Gruppen am Gesamtmailaufkommen und die Spam-Mail-

Quoten (Anteil der Spam-Mails in der jeweiligen Gruppe) sind in der folgenden

Tabelle zu finden:

Gruppe Anteil an den Mails Spam-Mail-Quote

1 5% 95%

2 15% 75%

3 80% 20%

(1) Übersetzen Sie die sechs Prozentzahlen der Tabelle in Wahrscheinlichkeiten

von Ereignissen.

(2) Wie groß ist die Wahrscheinlichkeit, dass eine Mail eine Spam-Mail ist?

(3) Gegeben Sei eine Spam-Mail. Wie groß ist die Wahrscheinlichkeit, dass sie

identifiziert wird?

Aufgabe 2.5.2. Ein Unternehmen sammelt Kundendaten aus drei verschiedenen

Quellen: Online-Formulare, mobile Apps und Social Media. 50% der Daten stam-

men aus Online-Formularen, und jeweils 25% aus mobilen Apps und Social Media.

Die Daten aus jeder Quelle haben unterschiedliche Fehlerraten: 1% der Daten aus

Online-Formularen sind fehlerhaft, 2% aus mobilen Apps und 4% aus Social Media.
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(1) Übersetzen Sie die gegebenen Prozentsätze in (bedingte) Wahrscheinlichkei-

ten für geeignet gewählte Ereignisse.

(2) Bestimmen Sie die Wahrscheinlichkeit, dass ein zufällig ausgewähltes Daten-

element fehlerhaft ist.

Hinweis : Verwenden Sie den Satz von der totalen Wahrscheinlichkeit für drei

Ereignisse: Sind A1, A2, A3 drei Ereignisse, so dass

A1 ∩ A2 = A1 ∩ A3 = A2 ∩ A3 = ∅ and B ⊂ (A1 ∪ A2 ∪ A3),

dann gilt

P (B) = P (B | A1) · P (A1) + P (B | A2) · P (A2) + P (B | A3) · P (A3).

(3) Wir wählen zufällig ein Datenelement aus und stellen fest, dass es fehlerhaft

ist. Bestimmen Sie die Wahrscheinlichkeit, dass dieses Datenelement aus der

mobilen App stammt. Verwenden Sie den Satz von Bayes.

2.6 Lineare Algebra

Die Algorithmen des maschinellen Lernens und der KI basieren im Kern auf Me-

thoden der linearen Algebra. Stellen wir uns Daten als große Tabellen vor, in denen

jede Zeile einen einzelnen Datenpunkt repräsentiert und jede Spalte ein Merkmal

dieses Datenpunkts beschreibt, so lassen sich diese Tabellen als Matrizen – ein zen-

trales Objekt der linearen Algebra – verstehen. Die Interpretation von Daten als

Matrix eröffnet uns Möglichkeiten wie Matrixmultiplikation, um Daten zu manipu-

lieren. Algorithmen wie z.B. neuronale Netze verwenden Matrizenmultiplikation,

um diese Daten zu transformieren und Merkmale zu extrahieren, die für die Da-

tenanalyse relevant sind. Dies ist die Motivation, uns in diesem Kapitel mit den

grundlegenden Konzepten der linearen Algebra vertraut zu machen. Die lineare

Algebra ist somit nicht nur ein abstraktes mathematisches Gebiet, sondern bildet

die Grundlage für die Methoden des maschinellen Lernens.
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2.6.1 Vektoren

Vektoren sind Listen von reellen Zahlen. Z.B. ist(
1

3

)

ein Vektor mit den zwei Einträgen 1 und 3. Wir sagen der Vektor hat die Länge 2,

weil er zwei Einträge hat. Geometrisch kann man sich einen Vektor als einen Pfeil

im Raum vorstellen, dessen Länge und Richtung durch die Zahlen in der Liste

bestimmt werden. Das nächste Bild zeigt den Vektor in der Kartesischen Ebene.

−3 −2 1 2 3 4

−3

−2

−1

1

2

3

4 (
1

3

)

Die Menge aller Vektoren der Länge n bezeichnen wir mit

Rn =


u1...
un

 ∣∣∣∣∣ u1, . . . , un ∈ R

 .

Dies ist ein sogenannter Vektorraum. Wir können Vektoren addieren und sie mit

einer skalaren Zahl a ∈ R multiplizieren, d.h.,

u =


u1

u2
...

un

 , v =


v1

v2
...

vn

 ; u+ v :=


u1 + v1

u2 + v2
...

un + vn

 , a · u :=


au1

au2
...

aun

 .

Vektoraddition und Skalarmultiplikation ist also komponentenweise definiert.
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Beispiel 2.6.1. Es ist 5

6

−1

+

 2

−2

4

 =

 5 + 2

6− 2

−1 + 4

 =

7

4

3

 .

Die Addition von Vektoren ist assoziativ und kommutativ. Für u, v ∈ Rn gilt:

u+ v = v + u, (u+ v) + w = u+ (v + w).

Außerdem hat Vektoraddition ein neutrales Element und inverse Elemente:

o =

0
...

0

 , −u =

−u1
...

−un

 .

Das bedeutet

u+ o = o+ u = u

und

u+ (−u) = o.

Vektoraddition und Skalarmultiplikation kann geometrisch interpretiert werden:

−3 −2 −1 1 2 3 4

−3

−2

−1

1

2

3

4

u

−2u

v

u+ v
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Vektoraddition legt die einzelnen Vektoren hintereinander und verbindet sie, während

Skalarmultiplikation Vektoren streckt oder staucht.

Vektorarithmetik – wie Arithmetik in den reellen Zahlen – erfüllt gewisse Regeln.

Satz 2.6.1. Für alle a, b ∈ R und u, v ∈ Rn erfüllt die skalare Multiplikation

(1) (a+ b) · v = a · v + b · v,

(2) a · (u+ v) = a · u+ a · v,

(3) (a · b) · v = a · (b · v),

(4) 1 · v = v.

Definition 2.6.1. Für Vektoren u ∈ Rn mit Einträgen ui und v ∈ Rn mit Ein-

trägen vi definieren wir das Skalarprodukt als

⟨u, v⟩ :=
n∑

i=1

ui · vi.

Wir sagen, dass u orthogonal zu v steht, falls ⟨u, v⟩ = 0. Die Norm ist

∥u∥ :=
√

⟨u, u⟩.

Beispiel 2.6.2. Seien

u =

 5

6

−1

 , v =

 2

−2

4

 .

Dann ist ⟨u, v⟩ = 5 · 2 + 6 · (−2) + (−1) · 4 = −6. Die Normen der zwei Vektoren

sind

∥u∥ =
√

⟨u, u⟩ =
√

52 + 62 + (−1)2 =
√
62, ∥v∥ =

√
22 + (−2)2 + 42 =

√
24.

Es gilt für a, b, u, v ∈ Rn und s, t ∈ R:

⟨a+ tb, u+ sv⟩ = ⟨a, u⟩+ t⟨b, u⟩+ s⟨a, v⟩+ st⟨b, v⟩.

Die Norm ∥u∥ von u ∈ Rn misst die Länge eines Vektors. Die Bedeutung des

Skalarprodukts zwischen u und v ist

cos(Winkel zwischen u und v) =
⟨u, v⟩

∥u∥ · ∥v∥
. (2.1)
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Die Gleichung in (2.1) können wir wie folgt beweisen: Sei γ der Winkel zwischen

u und v:

u

v

γ
o

Der Abstand von u nach v erfüllt, laut Kosinussatz, die Gleichung

∥u− v∥2 = ∥u∥2 + ∥v∥2 − 2∥u∥ · ∥v∥ · cos(γ).

Andererseits gilt

∥u− v∥2 = ⟨u− v, u− v⟩ = ⟨u, u⟩ − 2⟨u, v⟩+ ⟨v, v⟩ = ∥u∥2 + ∥v∥2 − 2⟨u, v⟩.

Vergleichen wir diese zwei Gleichungen erhalten wir (2.1).

Im maschinellen Lernen wird der Ausdruck ⟨u, v⟩/(∥u∥ · ∥v∥) auch cosine simi-

larity genannt. Die Ähnlichkeit zweier (Daten-)Vektoren wird durch den Winkel

zwischen ihnen gemessen. Dementsprechend heißt

d(u, v) = 1− ⟨u, v⟩
∥u∥ · ∥v∥

Kosinus-Abstand zwischen u und v.

2.6.2 Matrizen

Matrizen werden in vielen Bereichen des maschinellen Lernens verwendet, um Da-

ten darzustellen und zu manipulieren. Beispielsweise können Bilder als Matrizen

von Pixelwerten dargestellt werden, und Algorithmen für die Bilderkennung ver-

wenden oft Matrizenoperationen.
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Einem×n-Matrix ist eine rechteckige Anordnung oder Tabelle reeller Zahlen aij:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

 .

Wir schreiben

A = (aij) ∈ Rm×n

und nennen aij die Einträge,m die Anzahl der Zeilen und n die Anzahl der Spalten

der Matrix. Wenn m = n, wird die Matrix als quadratisch bezeichnet. Eine (1, n)-

Matrix ist ein Zeilenvektor, eine (m, 1)-Matrix ist ein Spaltenvektor. Zwei Matrizen

sind gleich, wenn alle Einträge gleich sind.

Die Matrix A hat n Spaltenvektoren

aj :=


a1j

a2j
...

amj

 , 1 ≤ j ≤ n

und sie hat m Zeilenvektoren

αi :=


ai1

ai2
...

ain

 , 1 ≤ i ≤ m

Wir schreiben auch

A =

 | |
a1 . . . an

| |



=

− α1 −
...

− αm −


(2.2)
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Ähnlich wie bei Vektoren definieren wir die Addition für Matrizen A = (aij)

und B = (bij) ∈ Rm×n durch

A+B =

 a11 + b11 . . . a1n + b1n
...

. . .
...

am1 + bm1 . . . amn + bmn

 =

 | |
a1 + b1 . . . an + bn

| |

 .

Ebenso die skalare Multiplikation mir c ∈ R :

cA =

 ca11 . . . ca1n
...

. . .
...

cam1 . . . camn

 =

 | |
ca1 . . . can

| |

 ,

wobei ai und bj die Spaltenvektoren von A und B sind. Diese Operationen sind as-

soziativ, kommutativ und distributiv, sodass der Raum der reellen m×n Matrizen

auch ein Vektorraum ist.

2.6.3 Matrix-Vektor und Matrix-Matrix Produkt

Im letzten Abschnitt haben wir die Addition von Matrizen definiert. Jetzt definie-

ren wir das Produkt zweier Matrizen. Beachte, dass nicht alle Matrizen miteinander

multipliziert werden können; die Seitenlängen müssen kompatibel sein.

Beispielsweise basieren neuronale Netze im Kern auf sequentiellen Matrixmul-

tiplikationen. Dies werden wir im nächsten Kapitel im Detail ausführen. In diese

Abschnitt lernen wir zunächst die abstrakt mathematische Definition kennen. Es

ist dabei aber wichtig zu betonen, dass diese abstrakte Definition vielen konkreten

Anwendungen zu Grunde liegt.

Definition 2.6.2. Sei A = (aij) ∈ Rm×r und B = (bkℓ) ∈ Rr×n. Dann definieren

wir das Matrixprodukt C = (ciℓ) := AB ∈ Rm×n durch

ciℓ =
r∑

s=0

ais · bsℓ, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Dies ist die Definition der Matrixmultiplikation auf der Ebene der einzelnen Ein-

träge. Wir entwickeln im weiteren Verlauf dieses Abschnitts einige Konzepte, die
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uns helfen werden, die Multiplikation einfacher und übersichtlicher darzustellen.

Zunächst aber ein Beispiel.

Beispiel 2.6.3.

(
1 2 3

2 1 4

)  1 1

2 − 1

0 1

 =

(
5 2

4 5

)
.

Definition 2.6.3. Sei A = (aij) ∈ Rm×n eine Matrix, dann ändert die transpo-

nierte Matrix A⊤ Zeilen mit Spalten, d.h.,

A⊤ =


a11 a21 . . . an1

a12 a22 . . . an2
...

...
. . .

...

a1m a2m . . . anm

 ∈ Rn×m.

Es gilt dabei

(A⊤)⊤ = A und (A+B)⊤ = A⊤ +B⊤.

In Zeilen- und Spaltenvektornotation können wir die transponierte Matrix wie folgt

schreiben:  | |
a1 . . . an

| |


⊤

=

− a1 −
...

− an −

 .

Das heißt, das Transponieren einer Matrix verwandelt Spalten in Zeilenvektoren

und umgekehrt.

Für Matrizen

S =

− s1 −
...

− sm −

 ∈ Rm×r, T =

 | |
t1 . . . tn

| |

 ∈ Rr×n

kann das Matrixprodukt geschrieben werden als

ST =

 ⟨s1, t1⟩ . . . ⟨s1, tn⟩
...

. . .
...

⟨sm, t1⟩ . . . ⟨sm, tn⟩

 ∈ Rm×n. (2.3)
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Satz 2.6.2. Seien A,B,C Matrizen, so dass die folgenden Formel definiert sind.

Dann gilt

(1) (AB)C = A(BC) (Assoziativität),

(2) (A+B)C = AC +BC und A(B + C) = AB + AC (Distributivität),

(3) (aA)B = a(AB) = A(aB) (Kompatibilität mit der Skalarmultiplikation).

Die transponierte Matrix eines Produkts ist das Produkt der transponierten

Matrizen, aber die Reihenfolge kehrt sich um (beachte, dass das Matrix Produkt

nicht kommutativ ist, die Reihenfolge zählt!): (AB)⊤ = B⊤A⊤.

Die Identitätsmatrix ist

I :=


1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

 ∈ Rn×n

Wir haben für alle A ∈ Rm×n und B ∈ Rn×k:

AI = A, IB = B.

Ein wichtiger Spezialfall ist Matrix-Vektor Multiplikation. Sind

A =

− a1 −
...

− am −

 ∈ Rm×n und u =

u1...
un

 ∈ Rn,

so ist das Produkt Au definiert durch

Au =

 ⟨a1, u⟩
...

⟨am, u⟩

 ∈ Rm.

Dies bedeutet, dass das Ergebnis der Multiplikation einer m×n-Matrix mit einem

n-Vektor ein Vektor im Rm ist, dessen i-te Komponente das Skalarprodukt des

i-ten Zeilenvektors von A mit dem Vektor u ist. Z.B. gilt immer

Iu = u.
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Beispiel 2.6.4. Das Produkt einer 2×3-Matrix mit einem Vektor der Länge 3 ist

ein Vektor in R2: (
1 2 3

2 1 4

)−2

1

0

 =

(
0

−3

)
.

Die erste Komponente des Ergebnisvektors ist

1 · (−2) + 2 · 1 + 3 · 0 = 0

und die zweite Komponente ist

2 · (−2) + 1 · 1 + 4 · 0 = −3.

Jede Matrix A ∈ Rm×n definiert somit eine Abbildung

ϕA : Rn → Rm, u 7→ Au. (2.4)

Diese Art von Abbildungen nennen wir lineare Abbildungen. Lineare Abbildungen

spielen eine zentrale Rolle in der Mathematik, da sie wichtige Eigenschaften wie die

Erhaltung von Vektoraddition und Skalarmultiplikation besitzen. Dies bedeutet,

dass für alle Vektoren u, v ∈ Rn und alle Skalare t ∈ R gilt:

ϕA(u+ tv) = ϕA(u) + tϕA(v), (2.5)

oder äquivalent,

A(u+ tv) = Au+ tAv.

Diese Eigenschaft ist essentiell z.B. in der Sprachverarbeitung, wo Wörter oder

Sätze als Vektoren dargestellt werden und lineare Abbildungen verwendet werden,

da dadurch semantische Beziehungen erhalten bleiben. Weitere Anwendungen fin-

den sich in der Bildverarbeitung, der Datenkompression und vielen anderen Be-

reichen des maschinellen Lernens. Das Verständnis linearer Abbildungen ist daher

ein Schlüssel zum Verständnis vieler Algorithmen und Techniken im Bereich der

künstlichen Intelligenz.
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2.6.4 Übungsaufgaben

Aufgabe 2.6.1. Berechnen Sie die folgenden Vektor- und Matrixoperationen (wenn

möglich):

(1) 2

1

2

4

+ 5

−2

3

0

;

(2) 2

 0

5

−6

+ 3

 7

−1

3

− 4

−5

−3

9

;

(3)

 2 3 15

12 −3 8

−9 −26 6

+ 2

−11 13 2

7 5 −21

16 2 −24

;

(4) 3

 1 2

5 7

−11 6

+ 2

−5 11 13

−8 17 −27

−2 12 4

.

Aufgabe 2.6.2. Seien

A =

0 1 −2

4 −1 2

3 0 −7

 , B =

0 −3 4

0 6 −8

2 5 6

 , C =

1 1 1

2 4 −1

3 5 0

 , I =

1 0 0

0 1 0

0 0 1

 .

Berechnen Sie X.

(1) X = A+B.

(2) X = A−B.

(3) X = 3B − 2C.

(4) X = AB.

(5) X = AB −BA.

(6) C = A+B −X

(7) X = A⊤B + I.

(8) A = AB −X⊤.

(9) X = BCB⊤.

(10) X = A⊤A−B⊤B.
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Aufgabe 2.6.3. Berechnen Sie die folgenden Matrixprodukte:

(1)

(
1 2

3 4

)
·

(
5 6

7 8

)
;

(2)

(
5 3 −2

1 4 1

)
·

−2 1

5 0

3 3

;

(3)

 2

1

−7

 ·
(
1 −1 3

)
;

(4)

1 2 3

2 3 4

3 2 1

 ·

−1 2 −2

2 −3 1

0 1 −1

.

Aufgabe 2.6.4. Seien a = (1,−4, 0, 6), b = (0, 3, 7,−2) und c = (5, 0,−3, 2).

Berechnen Sie x.

(1) x = 2a+ 5b.

(2) x = a− 2b+ c.

(3) x = a⊤ − b⊤ + 5c⊤.

(4) x = ab⊤ + 2.

(5) a+ c = 2b− x.

Aufgabe 2.6.5. Gegeben sei die folgende Tabelle mit den Noten von 8 Studieren-

den in einem Kurs.

Initialen Note

AB 1

CD 4

EF 3

GH 2

KL 2

NO 4

RS 1

TU 3

(1) Um welche Art von Merkmalen handelt es sich hier?

(2) Stellen Sie die Daten durch eine reelle Matrix A ∈ Rn×m dar. Wie lauten n

und m?
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3 Grundlagen der Künstlichen

Intelligenz (KI) und des

Maschinellen Lernens (ML)

3.1 Begriffsklärung

In diesem Abschnitt werden die grundlegenden Konzepte der Künstlichen Intelli-

genz (KI), des Maschinellen Lernens (ML) und des Deep Learning (DL) erläutert

und ihre Zusammenhänge aufgezeigt. Jeder Begriff wird detailliert betrachtet und

anhand von Beispielen veranschaulicht. Im Kern lässt sich feststellen, dass

KI ⊃ ML ⊃ DL.

Dies bedeutet, dass Deep Learning eine spezielle Form des Maschinellen Lernens

darstellt, und Maschinelles Lernen wiederum eine spezielle Form der Künstlichen

Intelligenz. KI ist das umfassendste Gebiet, ML ist darin enthalten, und DL ist

ein Teil des ML. Jeder Bereich baut auf den Erkenntnissen und Techniken des

vorherigen auf, verfolgt aber unterschiedliche Ansätze, um das Ziel intelligenter

Maschinen zu erreichen.

3.1.1 Künstliche Intelligenz (KI)

Stellen Sie sich vor, Sie versuchen, ein komplexes Spiel zu meistern, einen Text in

eine andere Sprache zu übersetzen oder ein Fahrzeug zu steuern. All diese Aufga-

ben erfordern Intelligenz. Die KI ist der Versuch, diese Intelligenz in Maschinen

abzubilden.
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Rich [22] definierte künstliche Intelligenz wie folgt:

”Artificial Intelligence is the study of how to make computers do things

at which, at the moment, people are better.”

Künstliche Intelligenz (KI) zielt darauf ab, Maschinen zu entwickeln, die Auf-

gaben bewältigen können, die menschliche Intelligenz erfordern. Dazu gehören

Fähigkeiten wie Problemlösung, logisches Denken, Entscheidungsfindung, Spra-

cherkennung, visuelle Wahrnehmung (das Erkennen von Objekten in Bildern), das

Verstehen und Erzeugen von Sprache sowie das Lernen aus Erfahrungen. Das Be-

streben, Intelligenz zu schaffen, ist nicht neu, hat aber mit dem Aufkommen moder-

ner, leistungsstarker Computer in den letzten Jahrzehnten erheblich an Dynamik

gewonnen.

Frühe Ansätze in der Informatik versuchten dies durch direkte Programmie-

rung zu erreichen. Dabei gaben Programmierer der Maschine eine umfangreiche

Sammlung von Regeln vor, die sie befolgen sollte. Das Problem bestand darin,

dass diese Regeln oft unflexibel waren und sich nur schwer auf komplexe, reale

Probleme anwenden ließen. Ein klassisches Beispiel ist ein Schachprogramm. Um

gut zu spielen, mussten frühe Schachprogramme mit Hunderttausenden von Re-

geln programmiert werden, die alle denkbaren Spielsituationen abdecken sollten.

Dies war sehr aufwendig und konnte nie vollständig sein. Ein weiterer Nachteil war

die Schwierigkeit, solche Systeme zu warten und zu erweitern, da jede neue Re-

gel unerwünschte Nebeneffekte haben und das System destabilisieren konnte. Eine

bessere Strategie ist es, dem System selbst zu ermöglichen, aus Daten zu lernen

und sich so flexibel an neue Situationen anzupassen.

Der Kern moderner KI-Systeme ist daher Software, die große Datenmengen ver-

arbeitet, um Lösungen zu generieren. Dabei werden Muster in den Daten gesucht,

um Vorhersagen für komplexe Situationen zu treffen. Dies erfordert die Anwen-

dung verschiedener mathematischer Methoden aus der linearen Algebra, der Wahr-

scheinlichkeitstheorie und der Statistik. Dazu müssen die Daten in Form von Zah-

len vorliegen; sie müssen also digitalisiert sein. Viele Daten, wie z.B. Bilder, Töne

oder Wörter, lassen sich leicht digitalisieren. Bei anderen Daten hingegen, z.B.

Gefühle oder Sinneswahrnehmungen, ist nicht unbedingt klar, wie sie zu digitali-

sieren sind.

Daher übersteigt die menschliche Intelligenz die Fähigkeiten aktueller KI-Systeme,
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die hauptsächlich auf Mustererkennung basieren. So umfasst menschliche Intel-

ligenz auch die körperlich-kinästhetische Intelligenz (die Fähigkeit, den eigenen

Körper zu steuern und einzusetzen), die interpersonelle Intelligenz (die Fähigkeit,

Stimmungen, Absichten und Motivationen anderer Menschen zu erkennen und zu

verstehen), sowie die existenzielle Intelligenz (ermöglicht, über Fragen der eige-

nen Existenz und des Sinns des Lebens zu reflektieren) [13]. Diese Aspekte von

Intelligenz sind für aktuelle KI-Systeme schwer zu erfassen.

3.1.2 Maschinelles Lernen (ML)

Maschinelles Lernen (ML) ist der Teilbereich der KI, der den Ansatz verfolgt, Ma-

schinen aus Daten lernen zu lassen, anstatt sie mit expliziten Regeln auszustatten.

Das bedeutet, dass dem System eine große Menge an Daten präsentiert wird, und

es selbstständig Muster in diesen Daten erkennt. Diese Mustererkennung dient als

Grundlage für das Treffen von Vorhersagen. Ein grundlegender Vorteil dieses An-

satzes ist, dass das System seine Leistung im Laufe der Zeit durch die Verarbeitung

zusätzlicher Daten verbessern kann.

Stellen Sie sich zum Beispiel vor, Sie möchten einen Algorithmus entwickeln,

der E-Mails automatisch als Spam oder Nicht-Spam einordnet. Anstatt manuell

Regeln zu definieren (z.B.: E-Mails mit den Wörtern ’Angebot’ oder ’Gewinn’ sind

Spam), geben Sie dem Algorithmus einen Datensatz mit Tausenden von E-Mails,

die bereits als Spam oder Nicht-Spam markiert sind. Der Algorithmus analysiert

diese Daten, erkennt die Muster und lernt, welche Merkmale einer E-Mail typisch

für Spam sind (z.B. bestimmte Wörter, der Absender, die Häufigkeit bestimmter

Zeichen). Je mehr E-Mails der Algorithmus analysiert, desto besser wird er in

der Spam-Erkennung. Dabei ist dem/der Programmierer:in oft nicht klar, welche

spezifischen Regeln das System verwendet, um Spam zu erkennen. Das System hat

seine eigenen Regeln aus den Daten abgeleitet.

ML ist somit ein datenbasierter Ansatz für KI. Er ist besonders nützlich für

Probleme, bei denen es schwierig oder unmöglich ist, explizite Regeln zu definieren.

Eine ausführliche Abhandlung der Mathematik hinter dem maschinellen Lernen

ist [11].
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3.1.3 Deep Learning (DL)

Deep Learning (DL) ist ein Teilbereich des Maschinellen Lernens, der sich auf

eine bestimmte Art von System zur Mustererkennung konzentriert, nämlich auf

sogenannte ”tiefe neuronale Netze” (deep neural networks). Die Struktur dieser

künstlichen neuronalen Netze ist dabei der Struktur des menschlichen Gehirns

nachempfunden. Das Netzwerk besteht aus mehreren Schichten, von denen je-

de unterschiedliche Merkmale aus den Daten extrahiert. Die Kombination dieser

Merkmale ermöglicht es dem Netzwerk, komplexe Zusammenhänge zu erkennen.

Wir werden künstliche neuronale Netze im Detail in Abschnitt 3.3 behandeln.

Deep Learning hat in den letzten Jahren enorme Fortschritte gemacht, insbeson-

dere in Bereichen wie Bilderkennung, Spracherkennung und natürliche Sprachver-

arbeitung. Dies liegt daran, dass DL-Algorithmen besonders gut darin sind, kom-

plexe Zusammenhänge in Daten zu erfassen, die für traditionelle ML-Algorithmen

schwer zu entdecken sind. Denken Sie an die Gesichtserkennung auf Ihrem Smart-

phone, die automatische Übersetzung von Texten oder die Fähigkeit von Sprachas-

sistenten wie Siri oder Alexa, Fragen zu beantworten. Diese Anwendungen basieren

in der Regel auf Deep Learning.

Eine ausführliche Referenz für Deep Learning ist [29].

3.2 Was bedeutet Lernen?

Im vorherigen Abschnitt haben wir maschinelles Lernen als einen Ansatz der

künstlichen Intelligenz beschrieben, der es Maschinen ermöglicht, aus Daten zu

lernen. Was bedeutet Lernen aber in diesem Kontext? Menschen können auf viele

verschiedene Arten lernen. Es ist ein komplexer Prozess mit unterschiedlichen Lern-

stilen, unter anderem durch Kombinationen von Vester’s [26] Lerntypen Hören, Se-

hen, Lesen und Fühlen/Tasten. Im maschinellen Lernen bezeichnet Lernen jedoch

eine spezifische Methode, um Informationen aus Daten zu extrahieren. In diesem

Abschnitt wollen wir mathematisch beschreiben, was dieses Lernen bedeutet. Da-

zu müssen wir zunächst klären, wie wir Information, beziehungsweise Muster in

Daten, mathematisch formalisieren können. Buckley [10] beschreibt Information

als Beziehung zwischen Datensätzen:
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”Information is [. . . ] a relationship between sets or ensembles of struc-

tured variety.”

Daraus folgt, dass wir Information mathematisch als eine Teilmenge beschreiben

können:

I ⊂ E × A, (3.1)

wobei E eine Menge von Eingaben und A eine Menge möglicher Ausgaben ist.

Dann bedeutet (x, y) ∈ I, dass die Eingabe x ∈ E und die Ausgabe y ∈ A

in Beziehung zueinander stehen; y ist eine mögliche Ausgabe für x. Beispielsweise

könnte x ein Bild einer Katze darstellen, während y das Wort ”Katze” selbst ist. In

diesem Beispiel bedeutet (x, y) ∈ I, dass x tatsächlich ein Bild mit Beschreibung y

ist. Wenn y′ hingegen das Wort ’Hund’ ist, dann gilt (x, y′) ̸∈ I. Andere Beispiele

sind Sensordaten (E) und zugehörige Zustände (A) oder Text (E) und zugehörige

Kategorien (A). Das Ziel des maschinellen Lernens ist es, eine mathematische oder

statistische Beschreibung von I zu finden.

3.2.1 Modelle

Der folgende Abschnitt basiert lose auf [9] und [11].

Wir wollen nun mathematische Modelle entwickeln, um die Menge I in (3.1)

beschreiben zu können. Wir werden dazu zwei Ansätze kennen lernen: das deter-

ministische Modell und das statistische Modell. Dazu werden wir im Folgenden

annehmen, dass

E = Rd, und A = Rn.

Das heißt, die Eingabedaten sind durch d reelle Zahlen und die Ausgabedaten

durch n reelle Zahlen bestimmt. Die Ein- und Ausgabedaten liegen somit in digi-

talisierter Form vor. Dies bedeutet, dass wir Daten, wie beispielsweise Bilder oder

Temperaturen, in Zahlen umwandeln, die ein Computer verarbeiten kann.

Das deterministische Modell beschreibt die Menge I als den Graphen einer Ab-

bildung f : Rd → Rn; d.h. I = {(x, y) | y = f(x)}. Gesucht wird dann die

Abbildung f . Da die Menge aller Abbildungen jedoch zu groß ist, um damit effek-

tiv zu rechnen, schränkt man sich bei der Modellwahl auf Abbildungen fθ ein, die

von endlich vielen Parametern θ abhängen.
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Beispiel 3.2.1. Sei d = n = 1 und fθ(x) = ax+ b. Dies ist das sogenannte lineare

Modell. fθ hängt von den zwei Parametern θ = (a, b) ab. Hierbei sind a und b

reelle Zahlen, die das Verhalten der Funktion bestimmen. Durch Anpassung dieser

Parameter können wir die Funktion an unsere Daten anpassen.

Das deterministische Modell beschreibt eine feste Beziehung zwischen Ein- und

Ausgabe. Das statistische Modell hingegen beschreibt den Zusammenhang zwi-

schen Ein- und Ausgabe mittels Zufallsvariablen X ∈ Rd und Y ∈ Rn und einer

Wahrscheinlichkeitsfunktion oder –dichte Pθ(y | x) für die Zufallsvariable Y gege-

ben X = x (siehe Definition 2.5.2). Die Dichte soll wieder von endlich vielen Para-

metern θ abhängen. Sie beschreibt, wie wahrscheinlich eine bestimmte Ausgabe y

ist, wenn die Eingabe x gegeben ist. In diesem Fall wäre I = {(x, y) | Pθ(y | x) > 0}
die Menge aller Paare, die eine positive Dichte aufweisen.

Beispiel 3.2.2. (1) Sei d = n = 1 und Pθ(y | x) = 1√
2πσ2

e−
1

2σ2 (y−x)2 . Dann ist y

eine normalverteilte Zufallsvariable mit Mittelwert x (siehe Abschnitt 2.4).

Der Parameter ist hier die Varianz θ = σ2. Diese Verteilung beschreibt, dass

die Ausgabe y wahrscheinlich in der Nähe des Wertes x liegt, wobei σ2 die

Streuung der Werte angibt.

(2) Sei d = 3, n = 1. D.h., x = (x1, x2, x3) ∈ R3, y ∈ R. Wir nehmen an,

dass y nur 3 Zustände annehmen kann, etwa y ∈ {1, 2, 3}. Dies ist der Fall in
Kategorisierungsproblemen, wenn wir dem Inputdatum x eine Kategorie y

zuordnen wollen. Pθ(i | x) = exp(xi)/(exp(x1) + exp(x2) + exp(x3)) ist ein

Beispiel für eine Wahrscheinlichkeitsverteilung auf {1, 2, 3}. Die Wahrschein-

lichkeit Pθ(i | x) wird auch SoftMax genannt; siehe Definition ??. SoftMax

wird insbesondere im Kapitel über Large Language Models (Kapitel 4) eine

zentrale Rolle spielen.

Wir fassen zusammen.

Definition 3.2.1. Sei Rd die Menge der Eingaben und Rn die Menge der Ausga-

ben. Die Anzahl der Parameter sei p.

(1) Ein deterministisches Modell ist eine Funktion fθ : Rd → Rn, die von Para-

metern θ ∈ Rp abhängt.

(2) Ein statistisches Modell ist eine Wahrscheinlichkeitsverteilung für Y gegeben

X = x mit Verteilung Pθ(y | x), die von Parametern θ ∈ Rp abhängt.
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3.2.2 Training

Wir nehmen nun an, dass wir ein Modell (Definition 3.2.1) mit Parametern θ ∈ Rp

ausgewählt haben und dass wir N Datenpaare

D = {(x1, y1), . . . , (xN , yN)} ⊂ Rd × Rn

gegeben haben. Die einzelnen Einträge der Daten bezeichnen wir in diesem Ab-

schnitt mit x
(j)
i bzw. y

(j)
i ; d.h., x

(j)
i ist der j Eintrag von xi und genauso für yi.

Beispiel 3.2.3. Stellen wir uns folgende N = 4 Daten (x, y) ∈ R3 × R vor:

x(1) = Abschluss x(2) = Wohnort x(3) = Alter y = Jahreseinkommen

MSc Osnabrück 36 60.145

PhD Osnabrück 24 72.541

BSc Hannover 31 58.901

MSc Bremen 29 61.005

Diese Daten sind noch nicht digitalisiert. Wir können sie z.B. digitalisieren,

indem wir dem Abschluss einen numerischen Wert zuordnen (Bsc = 1, Msc = 2,

PhD = 3) und die Stadt durch ihre geographischen Koordinaten (Breiten- und

Längengrad) ersetzen.

Im Kontext des maschinellen Lernens bezeichnen wir:

• xi als Eingabedaten oder Attribute.

• yi als Labels, Ausgabevariablen oder Responsevariablen.

Variablen, die jeden Wert innerhalb eines Bereichs annehmen können, werden kon-

tinuierliche Variablen genannt. Variablen, die nur bestimmte Werte annehmen

können, werden diskrete Variablen oder kategorische Variablen genannt.

Training bezeichnet den Prozess, mit Hilfe der Daten einen Parameter θ zu fin-

den, so dass das resultierende Modell die Daten gut beschreibt. Diesen Prozess

nennt man das Lernen des Parameters θ. Damit haben wir die Frage zu Beginn

dieses Abschnitts beantwortet: Im maschinellen Lernen bedeutet Lernen das Fin-

den eines Parameters anhand von Daten.
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Um einen Parameter zu finden, der die Muster in den Daten gut beschreibt,

müssen wir definieren, was ”gut” in diesem Fall bedeutet. Angenommen wir ha-

ben uns für ein deterministisches Modell fθ entschieden. Im optimalen Fall haben

wir dann einen Parameter gefunden, so dass f(x) = y für alle neuen Daten-

punkte (x, y). In der Praxis sind Daten oft ungenau oder verrauscht. Daher ist

es unrealistisch zu erwarten, dass f(x) genau y ergibt. Stattdessen verwenden wir

Annäherungen, um flexibler zu sein. Was ”nahe an” genau bedeutet, hängt vom

Problem ab und wird üblicherweise mithilfe einer Verlustfunktion

ℓ : Rn × Rn → R

gemessen. Dabei misst ℓ(y, ŷ) den Fehler zwischen einem tatsächlichen Wert y und

der Vorhersage ŷ, die unser Modell für y nach Eingabe von x getroffen hat. Eine

übliche Wahl ist z.B. die Norm ℓ(y, ŷ) = ∥y − ŷ∥ (siehe Definition 2.6.1) oder die

quadrierte Norm

ℓ(y, ŷ) = ∥y − ŷ∥2.

Je kleiner der Wert der Verlustfunktion, desto besser passt das Modell zu den

Daten.

Im vorherigen Abschnitt haben wir nun zum ersten mal einen wichtigen konzep-

tuellen Schritt gemacht:

Wir interpretieren Datenpunkte als Vektoren im Rn und somit als geo-

metrische Objekte! Dies eröffnet uns die Möglichkeit, Daten mittels

geometrischer Methoden zu manipulieren und somit Informationen aus

ihnen zu erhalten.

Idealerweise wählen wir ein Modell und lernen einen Parameter, der auch für

unbekannte Daten gute Vorhersagen liefert; d.h., dass für jeden neuen Daten-

punkt (x, y) und Vorhersage ŷ für y der Verlust ℓ(y, ŷ) klein ist. Deshalb teilen

wir die Daten in Trainingsdaten und Testdaten auf. Die Trainingsdaten verwen-

den wir, um den Parameter zu lernen, und die Testdaten, um zu prüfen, wie gut

unser Modell auf unbekannten Daten funktioniert. Um die Daten in Trainings- und

Testdaten aufzuteilen, können wir jedem Datenpunkt zufällig ein Label zuweisen.

Üblicherweise verwenden wir zwischen 50% und 90% der Daten für das Training.

Die zufällige Aufteilung in Trainings- und Testdaten sollte unabhängig von der

Modellauswahl sein.
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Nachdem wir ein Modell ausgewählt und die Daten vorbereitet haben, lernen

wir die Parameter. Beim deterministischen Modell verwenden wir die Empirische

Risikominimierung (ERM). Das bedeutet, wir suchen einen Parameter θ∗, der das

empirische Risiko

R(θ) :=
1

N

N∑
i=1

ℓ(yi, fθ(xi)).

minimiert. Man beachte, dass das empirische Risiko der Mittelwert (Definition 2.2.5)

der einzelnen Verluste ist.

Beim statistischen Modell können wir Maximum-Likelihood-Schätzung (MLE)

verwenden. Dies entspricht der Maximierung der Likelihood-Funktion

L(θ) :=
N∏
i=1

Pθ(yi | xi). (3.2)

Die Motivation für die Likelihood-Funktion ist die Annahme, dass die Datenpunkte

(xi, yi) (stochastisch) unabhängig (Definition 2.5.6) gezogen werden. Dann ist L(θ)

die Dichte der multivariablen Zufallsvariable (y1|x1, . . . , yN |xN). Alternativ können

wir auch die (negative und mit 1
N

skalierte) Log-Likelihood-Funktion

l(θ) := − 1

N

N∑
i=1

logPθ(yi | xi) (3.3)

minimieren, was einfacher ist, da Summen einfacher abzuleiten sind als Produkte.

Zusammenfassend besteht das Training im maschinellen Lernen also aus drei

Schritten:

(1) Daten in Trainings- und Testdaten aufteilen

(2) Parameter lernen

(3) Validierung.

Hierbei bedeutet Validierung, dass wir überprüfen, wie gut unser Modell auf den

Testdaten funktioniert. Dabei wird üblicherweise das empirische Risiko ausgewer-

tet und geprüft, ob das Risiko der Trainingsdaten ungefähr dem Risiko der Test-

daten entspricht. Wenn die Qualität des Modells auf den Trainingsdaten besser

ist als auf den Testdaten, spricht man von Überanpassung (oder Overfitting). Das
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bedeutet, dass das Modell die Trainingsdaten sehr gut gelernt hat, aber nicht in

der Lage ist, allgemeine Vorhersagen zu treffen.

Der Ansatz, den wir in diesem Abschnitt diskutiert haben, versucht, einen be-

stimmten Parameter θ zu bestimmen. Ein anderer Ansatz ist es, θ selbst als Zufalls-

variable zu interpretieren, so dass unser Modell Fluktuationen in θ berücksichtigt.

Beispielsweise könnte θ einer Wahrscheinlichkeitsverteilung folgen, die einen Mit-

telwert hat, den wir bereits beobachtet haben. Die Wahrscheinlichkeitsverteilung

für θ nennt man Prior-Verteilung. Die Responsevariable hat dementsprechend eine

bedingte Verteilung (y | x, θ). Der Satz von Bayes’ erlaubt es uns dann, die Ver-

teilung von θ bei Erhalt neuer Daten zu aktualisieren. Dieser Ansatz wird daher

unter dem Namen Bayesian machine learning zusammengefasst.

3.2.3 Lernparadigmen

Das im vorherigen Abschnitt vorgestellte Konzept nennt man auch überwachtes

Lernen, weil jeder Datenpunkt xi mit einem Label yi versehen ist. Das Wort

”überwacht” bedeutet in diesem Fall so viel wie, dass eine externe Quelle (wie z.B.

der/die Datenwissenschaftler:in) für Richtigkeit der Zugehörigkeit von xi und yi

zuständig ist, sie also überwacht. Dabei unterscheidet man oft zwei Haupttypen

beim überwachten Lernen:

• Regression: Das Label hat einen kontinuierlichen Wertebereich (z.B. Tempe-

ratur).

• Klassifikation: Das Label ist eine Kategorie (z.B. Katze/Hund).

Beispiel 3.2.4. Ein Beispiel für ein Klassifikationsproblem ist Beispiel 2.1.3: Ge-

geben ein Bild, welches Fashion-Item ist darauf zu sehen?

Angenommen wir haben ein Klassifikationsproblem und k Klassen {1, . . . , k}.
Dann können wir die i-te Klasse, mit dem i-ten Basisvektor ei identifizieren; d.h.,

ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rk und 1 steht an der i-ten Stelle. Sei nun Pθ ein

statistisches Modell, (x, y) ein Datenpunkt und ŷ ∈ Rk der Vektor dessen i-ter

Eintrag ŷ(i) gleich Pθ(y = ei | x) ist. Der Vektor ŷ gibt also die Wahrscheinlich-

keitsverteilung der k Klassen gegeben x an. Dann gilt log ŷ(i) =
∑k

i=1 y
(i) log ŷ(i),
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da ja y = ei nur einen Eintrag hat, der nicht Null ist, nämlich y(i). Wir setzen nun

in die Log-Likelihood Funktion (3.3) ein und erhalten

l(θ) =
1

N

N∑
i=1

ℓ(yi, ŷi), wobei ℓ(y, ŷ) = −
k∑

i=1

y(i) log ŷ(i).

Wir geben der Verlustfunktion in dieser Gleichung einen Namen.

Definition 3.2.2. Es seien y, ŷ ∈ Rk Vektoren, deren Einträge die Wahrschein-

lichkeiten von k Klassen angeben. Die Verlustfunktion

ℓ(y, ŷ) = −
k∑

i=1

y(i) log ŷ(i)

heißt Cross-Entropy.

Die Definition der Cross-Entropy hat folgenden Hintergrund. Wir betrachten

eine Zufallsvariable Ŷ auf den k Klassen mit der von unserem Modell berechneten

Wahrscheinlichkeitsverteilung ŷ ∈ Rk. In der Informationstheorie wird die Un-

sicherheit des Ereignisses Ŷ = i wird mit log(1/(ŷ(i))) = − log(ŷ(i)) modelliert.

Das bedeutet, dass je geringer die Wahrscheinlichkeit ŷ(i) für das Ereignis Ŷ = i

ist, desto mehr Unsicherheit enthält es! Wenn der i-te Eintrag von ŷ groß ist, ist

die Unsicherheit klein, weil wir bereits relativ viel darüber wissen, was passieren

wird, da die Eintrittswahrscheinlichkeit ja großist. Umgekehrt, wenn ein Ereignis

mit einer niedrigen Wahrscheinlichkeit eintritt, können wir es nur selten beobach-

ten und erhalten daher viel mehr Information, wenn es tatsächlich passiert. Ist

nun y die echte Verteilung, die von ŷ approximiert wird, so ist die Cross-Entropy

ℓ(y, ŷ) =
∑k

i=1 y
(i) (− log ŷ(i)) der Erwartungswert (Definition 2.4.5) der Unsicher-

heit von ŷ. Minimierung der Cross-Entropy bedeutet also, die Unsicherheit unseres

Modells zu minimieren. In der Informationstheorie wird das Fachwort Entropie für

Unsicherheit verwendet.

Im Unterschied zum überwachten Lernen gibt es auch das unüberwachte Lernen.

In diesem Fall haben wir nur die Eingabedaten x1, . . . , xN ∈ Rd, aber nicht die

Labels y1, . . . , yN ∈ Rn zur Verfügung, bzw. es ist uns nicht möglich die Labels in

angemessener Zeit zu generieren.
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Beispiel 3.2.5. Als Beispiel kann man sich einen großen Textdatensatz vorstel-

len, beispielsweise sämtliche YouTube Kommentare. Es ist unmöglich in einer

überwachten Art und Weise allen Kommentaren das Label ”Like” oder ”Dislike”

zuzufügen, da es einfach zu viele dieser Kommentare gibt.

Das Ziel beim unüberwachten Lernen es daher, Muster und Strukturen in den

(Eingabe-)Daten ohhne Zugriff auf die Labels zu finden. In obigen Beispiel könnte

ein unüberwachter Lernalgorithmus selbstständig anhand der Daten Klassen von

YouTube-Kommentaren generieren.

Einige gängige Techniken sind:

• Clustering: Gruppierung ähnlicher Datenpunkte (z.B. YouTube-Kommentare

klassifizieren).

• Dimensionsreduktion: Reduzierung der Anzahl der Variablen, ohne wichtige

Informationen zu verlieren (z.B. Visualisierung hochdimensionaler Daten).

• Assoziationsanalyse: Finden von Beziehungen zwischen Variablen (z.B. Kun-

den, die A kaufen, kaufen auch B).

Zuletzt gibt es noch das Konzept des verstärkenden Lernen Beim verstärkenden

Lernen lernt ein Agent, eine optimale Strategie zu entwickeln, um eine bestimmte

Aufgabe zu erfüllen, indem er in einer Umgebung interagiert und dabei lernt (d.h.

eine Qualitätsfunktion optimiert). Der Agent lernt durch Versuch und Irrtum. Er

probiert verschiedene Aktionen aus und beobachtet die Resultate. Dadurch lernt

er im Laufe der Zeit eine optimale Strategie.

Beispiel 3.2.6. Ein klassisches Beispiel ist das Training eines Roboters, der ein

Labyrinth navigieren soll. Eine Qualitätsfunktion belohnt direktere Wege und be-

straft Fehler wie z.B. gegen die Wand fahren. Der Roboter probiert verschiedene

Strategien und optimiert dadurch die Qualitätsfunktion und somit sein Verhalten.

Die hier diskutierte Einordnung verschiedener Lernparadigmen ist aber letztend-

lich nur eine Orientierung. In der Praxis verschwimmen oft die Grenzen zwischen

den drei Paradigmen, oder sie werden miteinander verschaltet. Manchmal ist auch

vom semi-überwachten Lernen oder selbst-überwachten Lernen die Rede.
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3.2.4 Übungsaufgaben

Aufgabe 3.2.1. Gegeben seien Eingabedaten x1, x2, x3 ∈ R mit Ausgabedaten

y1, y2, y3 ∈ R:

(x1, y1) = (1, 2), (x2, y2) = (2, 0), (x3, y3) = (0, 1
2
).

(1) Beschreiben Sie das lineare Modell fθ : R → R.

(2) Wieviele Parameter werden für das lineare Modell benötigt? Begründen Sie

Ihre Antwort.

(3) Beschreiben Sie im linearen Modell das empirische Risiko R(θ) der Daten,

wenn wir als Verlustfunktion den quadratischen Abstand ℓ(y, ŷ) = (y − ŷ)2

wählen.

Aufgabe 3.2.2. Gegeben seien Eingabedaten x1, x2, x3 ∈ R mit Ausgabedaten

y1, y2, y3 ∈ R2:

x1 = 1, y1 = (1
2
, 1
2
), x2 = 2, y2 = (1

4
, 3
4
), x3 = 0, y3 = (2

3
, 1
3
).

und das Modell

fθ(x) =

(
θ1x+ θ2

θ3x+ θ4

)
.

(1) Was sind die Parameter in diesem Modell? Begründen Sie Ihre Antwort.

(2) Beschreiben Sie das empirische Risiko R(θ) der Daten, wenn wir als Verlust-

funktion den quadratischen Abstand ℓ(y, ŷ) = ∥y − ŷ∥2 wählen.

(3) Beschreiben Sie das empirische Risiko R(θ) der Daten, wenn wir als Verlust-

funktion Cross-Entropy

ℓ(y, ŷ) = y(1) · log ŷ(1) + y(2) · log ŷ(2),

wobei y = (y(1), y(2)) und ŷ = (ŷ(1), ŷ(2)), wählen.

(4) Wie klein kann das empirische Risiko in (3) werden? Begründen Sie Ihre

Antwort.
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Aufgabe 3.2.3. Gegeben seien Eingabedaten x1, . . . , x4 ∈ R3 mit Ausgaben

y1, . . . , y4 ∈ R:

x1 = (1, 2, 4), y1 = 2, x2 = (0, 1, 1), y2 = 0,

x3 = (−2, 1, 0), y3 =
1
2
, x4 = (3, 2, 0), y4 = 1.

(1) Beschreiben Sie das lineare Modell fθ : R3 → R.

(2) Wieviele Parameter werden für das lineare Modell benötigt? Begründen Sie

Ihre Antwort.

(3) Beschreiben Sie im linearen Modell das empirische Risiko R(θ) der Daten,

wenn wir als Verlustfunktion den quadratischen Abstand ℓ(y, ŷ) = (y − ŷ)2

wählen.

Aufgabe 3.2.4. Es sei wieder fθ : R → R, fθ(x) = ax + b, θ = (a, b), das (de-

terministische) lineare Modell. Wir definieren ein statistisches Modell, indem wir

σ2 > 0 wählen und

y ∼ N(fθ(x), σ
2)

setzen. y gegeben x ist also eine normalverteilte Zufallsvariable mit Erwartungs-

wert fθ(x) und Varianz σ2; y streut also zufällig um den Mittelpunkt fθ(x). Die

Wahrscheinlichkeitsdichte von y | x ist dann

Pθ(y | x) = 1√
2πσ2

e−
1

2σ2 (y−fθ(x))
2

.

Gegeben seien wieder die Daten (x1, y1), (x2, y2), (x3, y3) aus Aufgabe 1.

(1) Berechnen Sie die Likelihood-Funktion

L(a, b) = L(θ) = Pθ(y1 | x1) · Pθ(y2 | x3) · Pθ(y3 | x3).

(2) Berechnen Sie die Log-Likelihood-Funktion l(a, b) = logL(a, b).

(3) Finden Sie einen optimalen Parameter θ, indem Sie die partiellen Ableitungen

gleich Null setzen: ∂
∂a
l(a, b) = ∂

∂b
l(a, b) = 0, und dann nach a und b auflösen.

Vergleichen Sie mit Aufgabe 1.

70



3 Grundlagen der Künstlichen Intelligenz (KI) und des Maschinellen Lernens (ML)

Aufgabe 3.2.5. Es sei fθ : R → R, fθ(x) = ax + b, θ = (a, b), das (deterministi-

sche) lineare Modell. Gegeben seien die drei Datenpunkte

(x1, y1) = (0, 0), (x2, y2) = (1, 1), (x3, y3) = (−1, 2).

Als Verlustfunktion haben wir wieder den quadratischen Abstand ℓ(y, ŷ) = (y−ŷ)2.

(1) Berechnen Sie das empirische Risiko R(θ) = R(a, b) bzgl. der Daten.

(2) Finden Sie einen optimalen Parameter θ, indem Sie die partiellen Ableitungen

gleich Null setzen: ∂
∂a
R(a, b) = ∂

∂b
R(a, b) = 0, und dann nach a und b auflösen.

Wir wollen nun im Rest der Aufgabe geometrisch beschreiben, was in (b) passiert.

(3) Zeigen Sie, dass

R(a, b) =
1

3
∥Xθ − y∥2,

wobei ∥ · ∥ die Norm von Vektoren aus Definition 2.6.1 ist und

X =

x1 1

x2 1

x3 1

 ∈ R3×2, y =

y1y2
y3

 ∈ R3, θ =

(
a

b

)
∈ R2.

(X heißt in diesem Kontext Datenmatrix ).

(4) Beachte, dass Xθ ∈ R3 ein Punkt im drei-dimensionalen ist. Was ist die

Menge aller dieser Punkte

H = {Xθ | θ ∈ R2} ⊂ R3

für ein geometrisches Objekt? Zeichnen Sie es im Raum. Zeichnen Sie auch

y ein.

(5) Überlegen Sie, dass R(a, b) minimiert wird, wenn der Abstand von y zu H

minimal wird.

(6) Berechnen Sie den Punkt p ∈ H, der am nächsten an y liegt, der also den

Abstand ∥p− y∥ minimiert. (Hinweis: Lot fällen!)

(7) Lösen Sie das Gleichungssystem Xθ = p und vergleichen Sie mit (b).

(8) Was passiert, wenn wir N ≥ 4 Datenpunkte haben?
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Aufgabe 3.2.6. Laden Sie das dritte Jupyter-Notebook herunter und führen es

aus.

(1) Ersetzen Sie den cars Datensatz, durch den GAGurine Datensatz:

data_GAG = dataset("MASS", "GAGUrine");

(2) Lesen Sie die Dokumentation, um zu verstehen, was die zwei Merkmale Age

und GAG im Datensatz bedeuten.

Es seien nun (x1, y1), . . . , (xN , yN) die Datenpunkte, wobei x Age angibt und y GAG

angibt.

(3) Wie gut beschreiben die drei Modelle im Notebook die Daten?

(4) Entwickeln Sie ein neues Modell, das die Daten besser beschreiben kann. Es

ist dazu hilfreich, die Daten zu visualisieren, um zu schauen, welcher Funkti-

onsgraph passen könnte. Visualieren Sie auch den transformierten Datensatz,

den wir erhalten, wenn wir die yi logarithmieren: {(xi, log(yi)) | 1 ≤ i ≤ N}.

3.3 Neuronale Netze

Eines der wichtigsten, wenn nicht das wichtigste Modell im maschinellen Lernen ist

das künstliche neuronale Netz. Im Abschnitt 3.2.1 haben wir ein mathematisches

Konzept für Modelle entwickelt und neuronale Netze sind ein Spezialfall davon.

Künstliche neuronale Netze sind der Funktionsweise biologischer Gehirne nach-

empfunden. Daher ist es sinnvoll sich kurz mit der Biologie neuronaler Aktivität

zu befassen, bevor wir neuronale Netze mathematisch beschreiben werden.

3.3.1 Wie funktionieren biologische Neuronen?

Ein menschliches Gehirn umfasst schätzungsweise 10 bis 100 Milliarden Nerven-

zellen, auch Neuronen genannt. Diese Anzahl an Einheiten bildet die Grundlage

für die Komplexität unseres Denkens und Handelns. Jedes dieser Neuronen ist ein

hochspezialisierter Zelltyp, der in der Lage ist, Informationen zu empfangen, zu

verarbeiten und weiterzuleiten.
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Ein Neuron besteht im Wesentlichen aus drei Hauptteilen: einem Zellkörper,

einem Axon und den Dendriten. Der Zellkörper kann vereinfacht als eine Art ”Ak-

kumulator” betrachtet werden, der elektrische Spannungen speichert. Diese Span-

nung wird durch eingehende Impulse anderer Neuronen aufgeladen. Dabei werden

diese Impulse über die Dendriten empfagen. Je mehr Impulse ankommen, desto

höher wird die Spannung im Zellkörper. Überschreitet die Spannung einen be-

stimmten Schwellenwert, wird ein elektrisches Signal ausgelöst und über das Axon

weitergeleitet. Die Verbindung zwischen dem Axon eines Neurons und dem Dendri-

ten eines anderen Neurons wird als Synapse bezeichnet. Neuronen kommunizieren

also nicht direkt miteinander, sondern über diese spezialisierten Kontaktstellen.

Wir können dies abstrakt visuell wie folgt darstellen:

Die beiden Kreise stellen die Neuronen dar, und der Pfeil symbolisiert die Richtung

der Informationsübertragung von einem Neuron zum anderen.

Synapsen bestehen aus einem kleinen Spalt, der von Neurotransmittern gefüllt

ist. Neurotransmitter sind chemische Botenstoffe, die das Signal von einem Neu-

ron zum nächsten übertragen. Die Stärke einer Synapse – ihre Leitfähigkeit oder

Wirksamkeit – ist nicht konstant, sondern dynamisch und verändert sich abhängig

von der Aktivität. Wird eine Synapse häufig genutzt, indem regelmäßig Signale

übertragen werden, wird sie gestärkt. Umgekehrt schwächt sich eine Synapse ab,

wenn sie wenig bis gar nicht genutzt wird. Diese Veränderung der synaptischen

Stärke ist die biologische Grundlage für Lernen und Gedächtnisbildung. Durch die

Verstärkung bestimmter synaptischer Verbindungen und die Abschwächung ande-

rer kann das Gehirn seine Struktur und Funktion an neue Erfahrungen anpassen.

3.3.2 Das McCulloch-Pitts Neuron

Die Idee, dass Nervenzellen für Wahrnehmung, Denken und Lernen verantwortlich

sind, setzte sich Anfang des 20. Jahrhunderts durch und führte 1943 zu ersten ma-

thematischen Modellen des Neurons durch McCulloch und Pitts [18]. Ein Neuron

wird dabei durch zwei reelle Werte y und b dargestellt; y gibt die elektrische Span-

nung und b den Schwellenwert an, ab dem das Neuron aktiv wird. Ein einfaches
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Netzwerk mit drei Neuronen, von denen zwei Information zum Dritten leiten, stellt

sich visuell wie folgt dar.

x1

x2

y

b
w1

w2

Hierbei bezeichnen x1 und x2 die Spannungen der Neuronen auf der linken Seite

und w1 und w2 bezeichnet die Stärke der neuronalen Verbindungen. Das Signal,

welches zum Neuron auf der rechten Seite geleitet wird ist dann w1x1 +w2x2. Das

Neuron auf der rechten Seite wird jedoch nur aktiviert, wenn ein Schwellenwert b

überschritten wird. Im McCulloch-Pitts Neuron stellt sich dies dann wie folgt dar:

y ist

aktiv, falls w1x1 + w2x2 − b > 0

inaktiv, falls w1x1 + w2x2 − b ≤ 0
.

Wir können dies in kompakter Art und Weise mit Hilfe einer sogenannten Akti-

vierungsfunktion σ darstellen:

y = σ(w1x1 + w2x2 − b).

Z.B. ist die ReLU (Rectified Linear Unit) Aktivierungsfunktion gegeben durch

σ(z) = max{0, z}.

Hierbei bedeutet y = 0 eben, dass das Neuron auf der rechten Seite inaktiv bleibt.

Insgesamt erhalten wir ein Modell

fθ : R2 → R, (x1, x2) 7→ y

mit Parametern θ = (w1, w2, b).

Wir diskutieren weitere Wahlen von Aktivierungsfunktionen in Abschnitt 3.3.4.

Für den Moment bleiben wir bei der ReLU Aktivierungsfunktion. Mit dieser Wahl
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ist das McCulloch-Pitts Neuron bereits relativ ausdrucksstark, wie das folgende

Beispiel zeigt.

Beispiel 3.3.1. Wir verwenden das McCulloch-Pitts Neuron zur Klassifizierung

von Daten in R2. Dabei klassifizieren wir Daten anhand der Zugehörigkeit zu einer

der zwei Gruppen

Gruppe 1 = {(x1, x2) ∈ R2 | fθ(x1, x2) > 0},
Gruppe 2 = {(x1, x2) ∈ R2 | fθ(x1, x2) = 0}.

Angenommen haben die vier Datenpunkte D = {(0, 0), (1, 0), (0, 1), (1, 1)} ⊂ R2.

Wir wollen die Punkte (0, 0), (1, 0) und (0, 1) der Gruppe 1 (orange) und den Punkt

(1, 1) der Gruppe 2 (lila) zuordnen:

x1

x2

(0, 0) (1, 0)

(0, 1) (1, 1)

Wir können dies mit dem McCulloch-Pitts Neuron mit Parametern θ = (2, 2, 3)

erreichen. Dann ist

fθ(x1, x2) = σ(2 · x1 + 2 · x2 − 3) = max{0, 2(x1 + x2)− 3}.

Also fθ(0, 0) = −3, fθ(1, 0) = fθ(0, 1) = −1 und fθ(1, 1) = 1.

Hier ist eine wichtige Beobachtung: Wir können einen Parameter θ finden, der

(0, 0), (1, 0) und (0, 1) einer Gruppe und den Punkt (1, 1) einer anderen Gruppe

zuordnet, weil sich die Punkte (0, 0), (1, 0) und (0, 1) durch eine Gerade von dem

Punkt (1, 1) trennen lassen. Die Entscheidungsgrenze ist der Ort, an dem sich

die zwei Gruppen treffen, also dort, wo x1 + x2 = 3
2
gilt. Dies ist die Gleichung

einer Gerade. Daher kann das McCulloch-Pitts Neuron nur Daten klassifizieren,

die durch eine Gerade trennbar sind. Z.B. lässt sich folgende Klassifizierung eben

nicht durch ein McCulloch-Pitts Neuron realisieren:
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x1

x2

(0, 0) (1, 0)

(0, 1) (1, 1)

Das Beispiel zeigt, dass die Ausdrucksstärke des McCulloch-Pitts Neurons be-

grenzt ist. Wir können nur Daten klassifizieren, die durch eine Gerade trennbar

sind. Dies motiviert die Entwicklung komplexerer Modelle, die in der Lage sind,

auch nicht-linear trennbare Daten zu klassifizieren. Eine Möglichkeit, dies zu errei-

chen, ist die Verwendung von mehrschichtigen neuronalen Netzen, die im Grunde

eine Verschaltung von McCulloch-Pitts Neuronen sind und die im nächsten Ab-

schnitt vorgestellt werden.

3.3.3 Struktur eines künstlichen neuronalen Netzes

Ein neuronales Netz ist ein Rechenmodell, das von der Struktur des menschlichen

Gehirns inspiriert ist. Es besteht aus miteinander verschalteten McCulloch-Pitts

Neuronen, die in Schichten organisiert sind. Hier ist ein Beispiel für ein einfaches

neuronales Netz mit vier Schichten:

x1

x2

x3

h11

h12

h21

h22

h23

y1

y2

Dabei heißt die linke Schicht Eingabeschicht, die rechte Schicht Ausgabeschicht

und die dazwischen liegenden Schichten versteckte Schichten (hidden layers). Jede

Schicht besteht aus mehreren Neuronen, die miteinander verbunden sind. Wir
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bennen die Neuronen nun um, da wir bei der folgenden Herleitungen unnötige

Fallunterscheidungen vermeiden wollen.

x
(0)
1

x
(0)
2

x
(0)
3

x
(1)
1

x
(1)
2

x
(2)
1

x
(2)
2

x
(2)
3

x
(3)
1

x
(3)
2

Wie im McCulloch-Pitts Neuron haben die Verbindungen zwischen den Neuro-

nen haben unterschiedliche Stärken, die durch Gewichte dargestellt werden. Au-

ßerdem hat jedes Neuron auch einen Bias-Term b
(l)
j , der den Schwellenwert des

Neurons in der l-ten Schicht angibt. In der obigen Abbildung sind die Gewichte

und Schwellenwerte nicht explizit dargestellt, aber jeder Pfeil erhält ein Gewicht

und jedes Neuron einen Schwellenwert. Wir nummerieren diese wie folgt:

• w
(l)
ij ist das Gewicht der Verbindung vom j-ten Neuron der (l−1)-ten Schicht

zum i-ten Neuron der l-ten Schicht.

• b
(l)
i ist der Bias-Term des i-ten Neurons in der l-ten Schicht.

Z.B. ist w
(1)
21 das Gewicht von x

(0)
1 zu x

(1)
2 und w

(2)
12 das Gewicht von x

(1)
2 zu x

(2)
1 .

Mit dieser Notation ist das von Neuron x
(2)
1 empfangene Signal

x
(2)
1 = σ

(
w

(2)
11 x

(1)
1 + w

(2)
12 x

(1)
2 − b

(2)
1

)
.

Allgemein ist das von Neuron i in Schicht l empfangene Signal

x
(l)
i = σ

( nl−1∑
j=1

w
(l)
ij x

(l−1)
j − b

(l)
i

)
, (3.4)

wobei

nl := Anzahl Neuronen in Schicht l.
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Um die Übersicht zu bewahren, werden die Gewichte oft in einer sogenannten

Gewichtsmatrix zusammengefasst. Für die obige Abbildung sind die Gewichtsma-

trizen

W (1) =

(
w

(1)
11 w

(1)
12 w

(1)
13

w
(1)
21 w

(1)
22 w

(1)
23

)
, W (2) =

w
(2)
11 w

(2)
12

w
(2)
21 w

(2)
22

w
(2)
31 w

(2)
32

 , W (3) =
(
w

(3)
11 w

(3)
12 w

(3)
13

)
.

Beachte, dass W (l) ∈ Rnl×nl−1 . Nun kommt eine entscheidende Beobachtung. Wir

können die Gleichungen (3.4) nun in kompakter Art und Weise mit Hilfe von

Vektoren und Matrizen schreiben. Definieren wir die Vektoren

x(l) =


x
(l)
1

x
(l)
2
...

x
(l)
nl

 ∈ Rnl , b(l) =


b
(l)
1

b
(l)
2
...

b
(l)
nl

 ∈ Rnl ,

so gilt

x(l) = σ
(
W (l)x(l−1) − b(l)

)
,

wobei σ hier komponentenweise auf den Vektor angewendet wird.

Mit Hilfe der Matrix-Vektor Notation können wir nun neuronale Netze mit be-

liebig vielen Schichten beschreiben. Insgesamt erhalten wir das folgende Modell:

Definition 3.3.1. Ein mehrschichtiges künstliches neuronales Netz mit L Schich-

ten und Parametern

θ = (W (1), b(1),W (2), b(2), . . . ,W (L), b(L)),

wobei

b(l) ∈ Rnl und W (l) ∈ Rnl×nl−1 ,

ist das Modell

fθ : Rn0 → RnL , fθ(x) =
(
(σ ◦ fL) ◦ (σ ◦ fL−1) ◦ · · · ◦ (σ ◦ f1)

)
(x),
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mit

fl(x) = W (l)x− b(l)

für l = 1, . . . , L.

Das Modell in Definition (3.3.1) wird auch als Feedforward-Netzwerk bezeichnet,

weil die Information nur in eine Richtung fließt, nämlich von der Eingabeschicht

zur Ausgabeschicht. Es gibt auch sogenannte rekurrente neuronale Netze, bei denen

die Information in beide Richtungen fließt darf.

3.3.4 Aktivierungsfunktionen

Im vorherigen Abschnitt haben wir die Aktivierungsfunktion σ = max{0, z} ver-

wendet. Die Motivation dafür war die Diskussion über die biologische Funktion

echter Neuronen und dass sie erst ab einem gewissen Schwellenwert aktiv werden.

Das mathematische Modell eines neuronalen Netzes in Definition 3.3.1 ist jedoch

derart allgemein, dass wir alternative Aktivierungsfunktion wählen können, auch

solche die keinen biologischen Ursprung haben. Darüberhinaus können wir für

verschiedene Schichten auch unterschiedliche Aktivierungsfunktionen wählen. Die

Wahl der Aktivierungsfunktionen kann einen großen Einfluss auf die Leistung des

neuronalen Netzes haben. Im Folgenden listen wir einige gängige Aktivierungs-

funktionen auf und diskutieren ihre Eigenschaften.

• ReLU (Rectified Linear Unit): Diese Aktivierungsfunktion haben wir bereits

diskutiert. Sie ist (komponentenweise) definiert als

σ(z) = max{0, z}.

Sie ist einfach zu berechnen und hat sich in vielen Anwendungen als effektiv

erwiesen.

• Sigmoid-Funktion: Die Sigmoid-Aktivierungsfunktion ist (komponentenwei-

se) definiert als

σ(z) =
1

1 + e−z
.

Sie bildet alle reellen Zahlen auf den Bereich (0, 1) ab und wird häufig in

Ausgabeschichten für binäre Klassifikationsprobleme verwendet.
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• Tanh (Hyperbolische Tangens): Die Tangens-Hyperbolicus-Funktion ist (kom-

ponentenweise) definiert als

σ(z) = tanh(z) =
ez − e−z

ez + e−z
.

Sie bildet reelle Zahlen auf den Bereich (−1, 1) ab und ist wie die Sigmoid-

Funktion glatt und differenzierbar, aber zentriert um 0.

Zuletzt definieren wir die SoftMax-Funktion.

Definition 3.3.2. Die SoftMax-Aktivierungsfunktion ist die Aktivierungsfunktion

σ(z) = SoftMaxt(z) =
1∑k

j=1 e
zj/t


ez1/t

ez2/t

...

ezk/t

 , wobei z =


z1

z2
...

zk

 ∈ Rk.

Hierbei ist t eine Konstante, die Temperatur genannt wird. Dies kommt daher,

dass die Einträge von SoftMaxt(z) sich mehr und mehr der Gleichverteilung (siehe

Beispiel 2.3.3) annähern, je größer t ist – genau wie sich Moleküle zufällig bewegen,

wenn die Temperatur steigt. Wenn die Temperatur von uns vorausgesetzt wird oder

wenn sie nicht wichtig für die Diskussion ist, schreiben wir SoftMax auch ohne das

Subskript t:

SoftMax(z) = SoftMaxt(z).

Die SoftMax-Aktivierungsfunktion nimmt einer Sonderrolle unter den vier hier

erwähnten Aktivierungsfunktionen ein. Zunächst ist sie keine komponentenweise

Aktivierungsfunktion. Die Ausgabe der SoftMax-Funktion ist ein Vektor, dessen

Komponenten alle positiv sind und deren Summe 1 ergibt. D.h. σ(z) gibt eine

Wahrscheinlichkeitsverteilung über k Klassen an. Die Wahl der SoftMax-Funktion

am Ende eines neuronalen Netzes in der Ausgabeschicht definiert somit ein statisti-

sches Modell im Sinne von Definition 3.2.1. Durch das Training der Modellparame-

ter lernt ein neuronales Modell mit SoftMax-Ausgabeschicht, die Wahrscheinlich-

keitsverteilung der Klassen für gegebene Eingabedaten zu approximieren. Dabei

sorgt die Exponentialfunktion in der SoftMax-Formel dafür, dass größere Eingabe-

werte exponentiell stärker gewichtet werden, was zu einer klareren Unterscheidung

zwischen den Klassen führt.
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3.3.5 Übungsaufgaben

Aufgabe 3.3.1. Gegeben Sei ein neuronales Netz, beschrieben als Graph wie folgt.

x

z1

z2

z3

y

w1

w2

w3

u1

u2

u3

Der Biaswert von zi ist bi, 1 ≤ i ≤ 3, und der Biaswert von y ist b0. Im ersten Layer

verwenden wir die nichtlineare Aktivierungsfunktionen σ1 und im Outputlayer die

Aktivierungsfunktionen σ2. Übersetzen Sie den Graphen in ein Modell fθ : R → R,
indem Sie fθ(x) angeben.

Aufgabe 3.3.2. Gegeben Sei ein neuronales Netz, beschrieben als Graph wie folgt.

Im ersten Layer verwenden wir die Aktivierungsfunktion σ1 und im Outputlayer

die Aktivierungsfunktion σ2.

(1) Beschriften Sie die Gewichte der Verbindungen und die Bias-Werte der Neu-

ronen mit Ihrer eigenen Notation.

(2) Übersetzen Sie den Graph in ein Modell fθ : R2 → R.

Aufgabe 3.3.3. Gegeben Sei ein neuronales Netz, beschrieben als Graph wie folgt.
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Im ersten Layer verwenden wir die nichtlineare Aktivierungsfunktionen σ1 und im

Outputlayer die Aktivierungsfunktionen σ2.

(1) Beschriften Sie die Gewichte der Verbindungen und die Bias-Werte der Neu-

ronen mit Ihrer eigenen Notation.

(2) Übersetzen Sie den Graph in ein Modell fθ : R2 → R.

Aufgabe 3.3.4. Gegeben Sei ein neuronales Netz, beschrieben als Graph wie folgt.

Im ersten Layer verwenden wir die nichtlineare Aktivierungsfunktionen σ1 und im

Outputlayer die Aktivierungsfunktionen σ2.

(1) Beschriften Sie die Gewichte der Verbindungen und die Bias-Werte der Neu-

ronen mit Ihrer eigenen Notation.

(2) Übersetzen Sie den Graph in ein Modell fθ : R2 → R.

Aufgabe 3.3.5. Gegeben Sei ein neuronales Netz, beschrieben als Graph wie folgt.

x z yw u

Der Biaswert von z ist b1, und der Biaswert von y ist b2. Sowohol im ersten Layer als

auch im Outputlayer verwenden wir die Identität σ(x) = x als Aktivierungsfunk-

tion. Zeigen Sie, dass das neuronale Netz in der Form fθ(x) = a ·x+ b geschrieben

werden kann. Was sind die Parameter θ?
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Aufgabe 3.3.6. Seien

f1(x1, x2) =

(
w1,1 w1,2

w2,1 w2,2

) (
x1

x2

)
−

(
b1

b2

)
und f2(z1, z2) =

(
u1 u2

) (z1
z2

)
− c,

und σ1, σ2 nichtlineare Aktivierungsfunktionen.

(1) Beschreiben Sie das neuronale Netz (σ2 ◦ f2 ◦ σ1 ◦ f1) : R2 → R als Graphen.

(2) Was sind die Parameter? Wieviele Parameter has das neuronale Netz insge-

samt.

Aufgabe 3.3.7. Seien

f1(x1, x2) =

w1 0

0 w2

w3 w4

 (
x1

x2

)
−

b1b2
b3

 und

f2(z1, z2, z3) =
(
u1 u2 u3

) z1z2
z3

− c,

und σ1, σ2 nichtlineare Aktivierungsfunktionen.

(1) Beschreiben Sie das neuronale Netz (σ2 ◦ f2 ◦ σ1 ◦ f1) : R2 → R als Graphen.

(2) Was sind die Parameter? Wieviele Parameter has das neuronale Netz insge-

samt.

Aufgabe 3.3.8. Es sei fθ(x1, x2) = max{w1x1+w2x2− b, 0} das McCulloch-Pitts

Neuron mit Parametern θ = (w1, w2, b).

(1) Sei θ = (1, 0, 1), also w1 = 1, w2 = 0 und b = 1. Skizzieren Sie die zwei

Regionen

R0 = {x = (x1, x2) ∈ R2 | fθ(x1, x2) = 0} und

R1 = {x = (x1, x2) ∈ R2 | fθ(x1, x2) > 0}−
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(2) Beurteilen Sie jeweils für die beiden unten skizzierten Datensätze, ob wir

die Parameter θ = (w1, w2, b) so setzen können, dass fθ die Klassen 0 und 1

trennt. Begründen Sie Ihre Antwort.

Datensatz 1:

1

1

0

0

Datensatz 2:

1

1

0
0

Hinweis: Jeder Kreis steht für ein Datum. Die Position eines Kreises stellt

den Wert des Inputdatums (x1, x2) ∈ R2 dar. Das Label stellt den Wert des

Outputdatums (0 oder 1) dar.

Aufgabe 3.3.9. Gehen Sie durch das vierte Jupyter-Notebook. Passen Sie es so

an, dass die Daten im MNIST Datensatz klassifiziert werden.
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Dies Kapitel basiert zu großen Teilen auf dem umfassenden Lehrbuch von Zhang,

Lipton, Li und Smola [29]. Für das Kapitel über Large Language Models (LLMs)

wurde außerdem das Youtube-Tutorial von Andrej Karpathy [14] herangezogen.

Eine weitere hilfreiche Quelle ist die Youtube-Playlist von 3Blue1Brown mit dem

Titel “Neural Networks” [6].

Ein Language Model hat das Ziel für eine Texteingabe ein neues Stück Text

zu generieren, das der Eingabe folgenden soll bzw. sie vervollständigen soll. Z.B.

könnte die Eingabe der Text “Mathematik-Lehrer:innen sind” sein. Dann wäre eine

mögliche Vervollständigung “Mathematik-Lehrer:innen sind super!”. Die Eingabe

wird üblicherweise Prompt genannt. Ein Language Model lernt aus vorgegebenen

Textdaten, wie Prompts typischerweise fortgesetzt werden.

Von einer mathematischen Sichtweise ist ein Language Model ein statistisches

Modell Pθ(y | x); siehe Definition 3.2.1. Hierbei sind x ∈ E und y ∈ A, wobei E

die Menge aller möglichen (Eingabe-)Prompts und A die Menge aller möglichen

Vervollständigungen ist, und θ bezeichnet wieder die Parameter des Modells. Für

einen gegebenen Prompt x berechnet das Modell dann die Wahrscheinlichkeiten für

alle möglichen Vervollständigungen y. Dies gibt die Wahrscheinlichkeitsverteilung

Pθ(y | x). Anschließend generiert das Language Model eine Vervollständigung y

gemäß dieser Verteilung. In obigen Beispiel wäre der Eingabeprompt für das Modell

x = “Mathematik-Lehrer:innen sind”. Die Wahrscheinlichkeit von y = “super!”

gegeben x ist groß genug, so dass, wenn wir die Vervollständigung, generieren, wir

mit hoher Wahrscheinlichkeit “super!” erhalten.

Beispiel 4.0.1. Das Uni-Gram Modell ist ein einfaches Sprachmodell, welches

aber sehr hilfreich ist, um die grundlegende Idee hinter Sprachmodellen besser zu

verstehen. Gegeben sei der Input Prompt x = “Mathematik-Lehrer:innen sind”.

Das Uni-Gram Modell ignoriert den Prompt komplett und wählt das nächste Wort
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nur anhand der relativen Häufigkeiten des Wortes in den Textdaten. Besteht der

Text z.B. aus m Wörtern und sind nsuper davon “super”, so erhalten wir, in An-

lehnung an Definition 2.5.1,

Pθ(“super!” | x) = nsuper

m
.

Die Parameter θ dieses Modells sind die Anzahl der Wörter im Text.

Zwei Beispiel Texte, die als Trainingsdaten für ein Uni-Gram Modell verwendet

werden könnten, sind Werke von Shakespeare [1] bereitgestellt vom Projekt Gu-

tenberg und Transskripte von 393 Spongebob Episoden [2] von Kaggle. Beides sind

englische Texte. Wir visualisieren die (absoluten) Häufigkeiten der Wörter (ohne

Sonderzeichen) jeweils in einem Histogramm (siehe Definition 2.1.9).
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Beispiel 4.0.2. Das Bi-Gram Modell (siehe z.B. [29, Abschnitt 9.3.1]) funktioniert

ähnlich wie Uni-Gram in Beispiel 4.0.1, ignoriert aber den Eingabe-Prompt nicht.

Gegeben sei wieder der Input Prompt x = “Mathematik-Lehrer:innen sind”. Das

Bi-Gram Modell beachtet nur das letzte Wort “sind” und ignoriert alles, was davor

kommt. Die Idee von Bi-Gram ist es, zu zählen wie oft “sind” und wie oft “sind

super” im Trainingstext vorkommen. Seien dazu nsind die Anzahl wie oft “sind”

und nsind super die Anzahl wie oft “sind super” im Trainingstext vorkommen. Dann

erhalten wir, inspiriert von Definition 2.5.1,

Pθ(“super!” | x) = nsind super

nsind

.

Die Parameter θ dieses Modells sind die Anzahl der Wörter und Wortpaare.

Ein Bi-Gram Modell, traininiert auf den Spongebob Daten [2], generiert z.B. für

den Input Prompt “Happy” folgenden Output (vgl. Jupyter-Notebook 5):

Happy birthday, SpongeBob!

SpongeBob: Oh, I just a good one, not a place him and the door and.

Dies sieht bereits nach einem sinnvollen Text aus. Bei genaueren Hinschauen sieht

man aber jedoch, dass Grammatik und Kontext nicht beachtet werden.

Es gibt auch das Tri-Gram Modell oder, ganz allgemein, das n-Gram Modell,

welche Wort Triple bzw. Wort n-tuple zählen, um Pθ(y | x) zu berechnen. Eine

etwas nuanciertere Methode ist Skip-Gram, welches wir in Abschnitt 4.1.1 bespre-

chen.

Das Ziel dieses Kapitels ist es, zu erklären, wie moderne Large Language Models

(LLM) funktionieren; wie also das statistische Modell Pθ(y | x) in einem LLM

berechnet wird. Insbesondere Ein schematische Darstellung eines Language Models

ist in Abbildung 4.1 gegeben. Im groben funktioniert es in drei Schritten.

(1) Zunächst wird der Prompt in eine digitale Repräsentation umgewandelt. Dies

wird als Einbettung bezeichnet. D.h., wir ordnen dem Prompt x eine Folge

von Vektoren im Rnembed zu. Die Dimension nembed heißt Einbettungsdimen-

sion und ist von Modell zu Modell unterschiedlich.

(2) Anschließend wird die Einbettung verarbeitet und Pθ(y | x) berechnet. In

einem Large Language Model (LLM) geschieht diese Verarbeitung durch ein

87



4 Large Language Models

Prompt x

Einbettung des Textes

Verarbeitung und Berechnung von Pθ(y | x)

Generieren von y

Vervollständigung y

Abbildung 4.1: Schematische Darstellung eines Language Models.

spezielles neuronales Netzwerk, nämlich aus einem Netzwerk sogenannter

Transformer-Blöcke. Wir werden Transformer ausführlich in Abschnitt 4.2

besprechen. Die zentrale Eigenschaft eines Transformers ist es, Kontext ler-

nen zu können. Dies ist essentiell für das Ziel bedeutungsvollen Text zu ge-

nerieren.

(3) Abschließend wird die Vervollständigung aus der Wahrscheinlichkeitsvertei-

lung Pθ(y | x) generiert und ausgegeben.

Insbesondere arbeitet ein LLM, anders als Bi-Gram in Beispiel 4.0.2, mit Ein-

bettungen und nicht direkt mit den Token. Texteinbettungen ermöglichen es geo-

metrische Verfahren zu verwenden, um Information zu verarbeitet. Dadurch kann

das Model komplexere Zusammenhänge lernen.

88
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4.1 Text-Einbettung und Tokenisierung

Wie wollen wir einen Text-Prompt x in eine digitale Repräsentation umwandeln,

damit ein Computer damit arbeiten kann. Dies geschieht bei LLMs in zwei Schrit-

ten: Zunächst wird der Text in sogenannte Tokens zerlegt. Dies sind Textbau-

steine, die aus einem oder mehreren Zeichen bestehen können. Der Prozess der

Zerlegung eines Textes in Tokens wird als Tokenisierung bezeichnet. Die Menge

aller möglichen Tokens wird als Vokabular bezeichnet.

Beispiel 4.1.1. Der Text “Mathematik-Lehrer:innen sind super!” könnte in die

einzelnen Worte und Zeichen als Tokens

“Mathematik”, “-”, “Lehrer:innen”, “”, “sind”, “”, “super”, “!”

zerlegt werden. Dies ist z.B. der Ansatz in Beispiel 4.0.2, wo wir Worte und Wort-

paare gezählt haben. Eine andere Möglichkeit wäre

“Mathe”, “matik”, “-”, “Lehrer”, “:”, “innen”, “”, “sind”, “”, “super”, “!”.

Eine weitere Möglichkeit wäre, den gesamten Text als ein einziges Token zu be-

trachten, oder jeden einzelnen Buchstaben als separates Token zu betrachten. Es

gibt viele verschiedene Möglichkeiten, einen Text in Tokens zu zerlegen.

Sei wieder E die Menge aller möglichen Text-Prompts. Sei zudem F die Menge

aller möglichen (endlichen) Tokenfolgen für ein gegebenes Vokabular V; d.h., F ist

die Menge von Folgen mit Elementen in V.

Beispiel 4.1.2. Wir betrachten erneut den Text aus Beispiel 4.1.1. Angenommen

die Tokens aus diesem Beispiel sind bereits das ganze Vokabular:

V = {“Mathematik”, “-”, “Lehrer:innen”, “”, “sind”, “super”, “!”}.

Dann ist z.B. die Tokenfolge
(
“Mathematik”, “-”, “!”

)
∈ F.Genauso ist die Token-

folge
(
“super”, “”, “sind”, “-”

)
∈ F. Die Tokenfolgen in F können unterschiedlich

lang sein und müssen keinen Sinn ergeben.

Hier kommt die zentrale Definition dieses Abschnitts.
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Definition 4.1.1. Sei V Vokabular und F die Menge aller möglichen Tokenfolgen

für V. Wir definieren:

(1) Ein Tokenisierer ist eine Abbildung

τ : E → F,

die einem Prompt x in die zugehörige Tokenfolge τ(x) ∈ F zerlegt.

(2) Sei nembed ∈ N. Eine Einbettung ist eine Abbildung

φ : V → Rnembed .

Sie ordnet jedem Token t ∈ V einen Vektor φ(t) ∈ Rnembed zu. Die Di-

mension nembed heißt Einbettungsdimension. Die Einbettung einer Token-

folge (t1, t2, . . . , tk) ∈ F ist dann definiert als die Folge der zugehörigen

Einbettungs-Vektoren (φ(t1), φ(t2), . . . , φ(tk)).

Beispiel 4.1.3. Wir fahren mit Beispiel 4.1.3 fort. Das Vokabular hat 7 Elemente.

Eine mögliche Einbettung g : V → R7 wäre

φ(“Mathematik”) = (1, 0, 0, 0, 0, 0, 0),

φ(“-”) = (0, 1, 0, 0, 0, 0, 0),

φ(“Lehrer:innen”) = (0, 0, 1, 0, 0, 0, 0),

φ(“”) = (0, 0, 0, 1, 0, 0, 0),

φ(“sind”) = (0, 0, 0, 0, 1, 0, 0),

φ(“super”) = (0, 0, 0, 0, 0, 1, 0),

φ(“!”) = (0, 0, 0, 0, 0, 0, 1).

Diese Art von Einbettung heißt auch One-Hot-Encoding, weil jeder Token durch

einen Vektor dargestellt wird, der in genau einer Komponente den Wert 1 und in

allen anderen Komponenten den Wert 0 hat.

Das Motivation Wort-Einbettungen zu verwenden ist es, geometrische Metho-

den in Rnembed zu verwenden, um Information aus Texten zu extrahieren. Dazu ist

One-Hot-Encoding nicht gut geeignet, weil alle Token einem Standardbasisvektor
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φ(“Physik”)

φ(“Mathematik”)

φ(“langweilig”)

Abbildung 4.2: Beispiel für eine Einbettung in R2. Die Tokens “Physik” und “Mathematik” sind
thematisch ähnlich und werden durch Vektoren dargestellt, die einen kleinen Winkel zueinander
haben. Das Token “langweilig” ist thematisch anders und wird durch einen Vektor dargestellt,
der einen großen Winkel zu den anderen beiden Vektoren hat.

zugeordnet werden, welche alle den gleichen Abstand und den gleichen Winkel zu-

einander haben. Bessere Einbettungen ordnen Token Vektoren zu, die semantisch

ähnliche Token näher zueinander abbilden. Z.B. könnten die Tokens “Mathematik”

und “Physik” Vektoren zugeordnet werden, die einen kleinen Winkel zueinander

haben, weil sie thematisch ähnlich sind; siehe Abbildung 4.2. Die Idee ist es also,

Information durch Geometrie zu repräsentieren!

Wir wollen im Rest dieses Abschnitts zwei Methoden kennenlernen, um die

Einbettung φ : V → Rnembed zu lernen. Die erste Methode basiert auf der soge-

nannten Skip-Gram-Modell, die zweite Methode heißt Continuous-Bag-of-Words.

Beide werden unter dem Namen Word2Vec zusammengefasst und haben zum Ziel

die Einbettung so zu lernen, dass semantisch ähnliche Tokens durch Vektoren dar-

gestellt werden, die nahe beieinander liegen.

Interessanterweise wurde in [19] beobachtet, dass in diesen Modellen sich se-

mantische Beziehungen zwischen Token in algebraischen Relationen zwischen Vek-

torn übersetzt werden. Sind z.B. vBerlin, vDeutschland, vParis und vFrankreich die Ein-

bettungen der Tokens “Berlin”, “Deutschland”, “Paris” und “Frankreich”, so gilt

näherungsweise

vBerlin − vDeutschland + vFrankreich = vParis.

Dies bedeutet, dass die Beziehung “Hauptstadt von” in der Vektorraum-Einbettung

durch die obige algebraische Relation dargestellt wird. Solche Relationen sind be-

sonders nützlich für viele Anwendungen in der natürlichen Sprachverarbeitung.
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Insbesondere bleibt diese Relation unter der Transformation durch lineare Ab-

bildungen (2.4) erhalten. Der Grund ist die Eigenschaft (2.5). D.h. wir können

lineare Abbildungen verwenden, um diese Vektoren zu manipulieren ohne die se-

mantischen Relationen zu verlieren!

4.1.1 Das Skip-Gram Modell

Die Word2Vec-Methode basiert auf der Beobachtung, dass jedes Wort bzw. Token

zwei Rollen in einem Text einnehmen kann: Ess können als Wort an sich stehen

oder Information zur Bedeutung anderer Wörter liefern. Um dies zu modellieren,

werden zwei Einbettungsfunktionen gelernt:

φ : V → Rnembed und ψ : V → Rnembed .

Jedem Token t ∈ V werden zwei verschiedene Repräsentationen als Vektoren zuge-

ordnet, eine als Zentrums-Vektor φ(t) und eine als Kontext-Vektor ψ(t). Die erste

Einbettung φ(t) soll die Rolle von t als Token an sich repräsentieren, während ψ(t)

die Rolle von t als Kontext für andere Tokens repräsentieren soll. Nachdem bei-

de gelernt wurden, wird üblicherweise φ als Einbettung für das Language Modell

verwendet.

Im Folgenden nehmen wir an, dass das Vokabular R Tokens enthält, die wie

folgt nummeriert sind:

V = {t1, . . . , tR}. (4.1)

Für alle k bezeichnen wir dann mit vk = φ(tk) der Zentrums-Vektor und mit

wk = ψ(tk) den Kontext-Vektor des Tokens ti. Wir können die Ziel- und Kontext-

Vektoren in Matrix Form zusammenfassen.

V =

 | |
v1 . . . vR

| |

 ∈ Rnembed×R und W =

 | |
w1 . . . wR

| |

 ∈ Rnembed×R, (4.2)

wobei wir die Notation mittels Spaltenvektoren aus (2.2) verwendet haben.

Die Word2Vec-Methode lernt die Einbettungen φ und ψ, indem sie die Wahr-

scheinlichkeit modelliert, mit der ein Token ti im Kontext eines anderen Tokens tj
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auftritt. Diese Wahrscheinlichkeit wird mit Hilfe des Skalarprodukt ⟨vi, wj⟩ (siehe
Definition 2.6.1) der beiden Einbettungen modelliert. Je größer ⟨vi, wj⟩ (also je

kleiner der Winkel zwischen vi und wj!), desto wahrscheinlicher soll tj im Kontext

von ti auftreten.

Definition 4.1.2. (vgl. [29, Abschnitt 15.1.3].) Seien ti, tj ∈ V. Wir definieren die

bedingte Wahrscheinlichkeit, dass das Token tj im Kontext des Tokens ti auftritt:

P skip−gram
θ (tj | ti) =

exp(⟨vi, wj⟩)∑R
k=1 exp(⟨vi, wk⟩)

.

Die Parameter θ sind die Matrizen V und W aus (4.2).

Eine wichtige Beobachtung ist es, dass wir P skip−gram
θ (tj | ti) erhalten, wenn wir

die SoftMax-Aktivierungsfunktion (siehe Definition ??) auf die Skalarprodukte

⟨vi, wk⟩ für alle 1 ≤ k ≤ R anwenden.

Die paarweisen Skalarprodukte lassen sich dann mit Hilfe von (2.3) als Matrix-

Multiplikation schreiben. Wir fassen das als einen Satz zusammen.

Satz 4.1.1. Seien V und W wie in (4.2) definiert. Dann gilt

V ⊤W = (⟨vi, wj⟩)Ri,j=1.

Demensprechend lässt sich die bedingte Wahrscheinlichkeit in Definition 4.1.2 als

P skip−gram
θ (tj | ti) =

exp
(
(V ⊤W )i,j

)∑R
k=1 exp

(
(V ⊤W )i,k

)
schreiben; d.h., wir wenden SoftMax auf die Zeilen von V ⊤W an.

Gegeben sei nun eine Folge von Tokens

(s1, s2, . . . , sk) ∈ F

aus dem Trainings-Text, si ∈ V = {t1, . . . , tR} für i = 1, . . . , k. Das Word2Vec-

Modell definiert ein festes Kontextfenster m ∈ N. Innerhalb dieses Kontextfensters

werden alle Wahrscheinlichkeiten P skip−gram
θ (sj | si) für alle Paare (si, sj) berech-

net, bei denen sj im Kontextfenster von si liegt. D.h., es gilt |i− j| ≤ m.
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Beispiel 4.1.4. Wir betrachten wieder den Text “Mathematik-Lehrer:innen sind

super!” aus Beispiel 4.1.1 zerlegt in die Tokenfolge

“Mathematik”, “-”, “Lehrer:innen”, “”, “sind”, “”, “super”, “!”.

Ist nun ein Kontextfenster m = 2 gegeben, dann sind die Tokens im Kontext von

“Lehrer:innen” die Tokens “Mathematik”, “-”, “” und “sind”, weil diese Abstand

von höchstens m = 2 zum Token “Lehrer:innen” haben. Andererseits ist “super”

nicht im Kontextfenster von “Lehrer:innen”.

Gegeben sei nun ein Kontextfensterm. Wie in (3.2) erhalten wir folgende Likelihood-

Funktion für das Skip-Gram Modell.

Definition 4.1.3. Die Likelihood-Funktiondes Skip-Gram Modells ist definiert als

Lskip−gram(θ) =
k∏

i=1

∏
j:|i−j|≤m

P skip−gram
θ (sj | si).

Die Parameter θ dieses Modells sind die Matrizen V und W aus (4.2).

Für das Training des Skip-Gram Modells werden nun zufällig Tokenfolgen aus

dem Trainings-Text gezogen und die Parameter θ so optimiert, dass die Likelihood-

Funktion Lskip−gram(θ) möglichst groß wird. Das Training von Skip-Gram ist somit

überwacht (siehe Abschnitt 3.2.3), weil die Trainingsdaten aus den Paaren (si, sj)

in Definition 4.1.3. Da das Modell die Paare selbst aus den Texten extrahiert,

spricht man auch von selbst-überwachtem Lernen.

4.1.2 Das Continuous-Bag-of-Words Modell

Das Skip-Gram Modell aus dem vorherigen Abschnitt modelliert die Wahrschein-

lichkeit, mit der ein Token im Kontext eines anderen Tokens auftritt. Das Continuous-

Bag-of-Words Modell (CBOW) verfolgt einen umgekehrten Ansatz. Es modelliert

die Wahrscheinlichkeit, mit der ein Token gegeben einen Kontext auftritt. In An-

lehnung an Definition 4.1.2 erhalten wir die folgende Definition.
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Definition 4.1.4. (vgl. [29, Abschnitt 15.1.4].) Seien ti, tj1 , . . . , tj2m ∈ V (die An-

zahl ist 2m, weil wir alle Token neben ti innerhalb eines Kontextfensters der Größe

m verwenden wollen). Sei weiterhin

v :=
1

2m
(vj1 + · · ·+ vj2m)

der (eintragsweise) Mittelwert der Ziel-Vektoren vjk . Wir definieren die bedingte

Wahrscheinlichkeit, dass im Kontext der Token tj1 , . . . , tj2m das Token ti auftritt

als

P cbow
θ (ti | tj1 , . . . , tj2m) =

exp(⟨v, wi⟩)∑R
k=1 exp(⟨v, wk⟩)

.

Gegeben sei nun wieder eine Folge von Tokens (s1, s2, . . . , sk) ∈ F und ein

Kontextfenster m ∈ N. Genau wie in Definiton 4.1.3 erhalten wir die Definition

der Likelihood-Funktion für das CBOW Modell.

Definition 4.1.5. Die Likelihood-Funktiondes CBOW Modells ist definiert als

Lcbow(θ) =
k∏

i=1

P cbow
θ (si | si−m, . . . , si−1, si+1, . . . , si+m).

Die Parameter θ dieses Modells sind die Matrizen V und W aus (4.2).

Für das Training des CBOW Modells werden wie für das Skip-Gram Modell

zufällig Tokenfolgen aus dem Trainings-Text gezogen und daraufhin die Likelihood-

Funktion Lcbow(θ) oder die Log-Likelihood-Funktion lcbow(θ) = logLcbow(θ) opti-

miert. Das Training von CBOW ist somit genau wie das Training für Skip-Gram

überwacht bzw. selbst-überwacht.

Es gibt weitere Modelle zur Text-Einbettung, wie z.B. GloVe. GloVe verwendet

zusätzlich zu einem Kontextfenster auch die globale Häufigkeit von Token-Paaren

im Text, um die Einbettung zu lernen. Dies stellt eine signifikante Verbesserung

des Ansatzes zum Lernen von Texteinbettungen dar, da sowohl Skip-Gram als auch

CBOW nur lokale kontextuale Informationen verarbeiten können. Wir verweisen

hier auf [29, Abschnitt 15.5.1] für weitere Details.
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4.1.3 Übungsaufgaben

Aufgabe 4.1.1. Gegeben sei ein Tokenisierer mit Vokabular V = {h, a, l, o}.

(1) Entscheiden Sie, welche der folgenden Texte durch τ in Token zerlegt werden

können:

• hallo

• aal

• holla

• laos

(2) Geben Sie für alle Texte in (a), wenn möglich, eine Tokenisierung an.

Aufgabe 4.1.2. Gegeben sei ein Tokenisierer mit Vokabular V = {ab, bc, abc}.

(1) Entscheiden Sie, welche der folgenden Texte durch τ in Token zerlegt werden

können:

• ababc

• abbc

• abcab

• abababc

(2) Geben Sie für alle Texte in (a), wenn möglich, eine Tokenisierung an.

Aufgabe 4.1.3. Wir betrachten zwei einfache Tokenisierungsverfahren:

(1) Wort-Tokenisierer: Dieser Tokenisierer zerlegt einen Text in Wörter, die

durch Leerzeichen getrennt sind. Z.B. wird der Text “Ich liebe Mathe” in

die Token Ich, liebe und Mathe zerlegt.

(2) Zeichen-Tokenisierer: Dieser Tokenisierer zerlegt einen Text in einzelne Zei-

chen. Z.B. wird der Text “Ich liebe Mathe” in die Token I, c, h, , l, i, e,

b, e, , M, a, t, h und e zerlegt.

Diskutieren Sie mögliche Vor- und Nachteile der beiden Tokenisierungsverfahren.
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Aufgabe 4.1.4. (1) Gegeben sei der Text “Mathe”. Auf wieviele Arten lässt

sich der Text in Token zerlegen?

(2) Gegeben sei der Text “Osnabrück”. Auf wieviele Arten lässt sich der Text in

Token zerlegen?

(3) Ganz allgemein, auf wieviele Arten lässt sich ein Text, der aus N Buchstaben

und Sonderzeichen besteht, in Token zerlegen?

4.2 Transformer

Text-Einbettungen wie Skip-Gram und CBOW haben einen entscheidenen Nach-

teil: Jedem Token wird ein fester Vektor zugeordnet, unabhängig davon, in wel-

chem Kontext das Token auftritt. Dies ist problematisch, weil die Bedeutung eines

Tokens stark vom Kontext abhängen kann. Z.B. hat das Wort “Flügel” in den

Sätzen “Der Vogel hat Flügel.” und “Ich spiele auf dem Flügel.” unterschiedliche

Bedeutungen. Der Transformer löst dieses Problem, indem er Texteinbettungen

kontextabhängig weiterverarbeitet. Die Einbettung von “Flügel” wird also für die

beiden Beispiel-Sätze unteschiedlich behandelt. Dies geschieht durch den sogenann-

ten Attention-Mechanismus [25].

Ganz allgemein ist ein Transformer (manchmal auch: Transformer-Block) ein

Modell der Form

f : Rnembed×m → Rnembed×m, X 7→ f(X),

das eine Eingabe-Matrix X ∈ Rnembed×m auf eine Ausgabe-Matrix

f(X) ∈ Rnembed×m

abbildet. Hierbei ist m die Größe des Kontextfensters, also die maximale Anzahl

an Token, die gleichzeitig verarbeitet werden kann. Der Transformer transformiert

die Einbettung X eine eine neue Einbettung f(X). Diese neue Einbettung ist dann

mit kontextualer Information versehen.

Formell müssten wir f = fθ schreiben, um die Abhängigkeit von den Modellpara-

metern θ zu verdeutlichen. Wir verzichten in diesem Abschnitt der Übersichtlichkeit

halber darauf und diskutieren die Parameter getrennt von der Notation.
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Es gibt natürlich viele verschiedene Architekturen für Transformer. Wir werden

folgende simple Version besprechen:

T = fNN ◦ fattention. (4.3)

Hierbei ist fNN : Rnembed×m → Rnembed×m ein mehrschichtiges neuronales Netz wie

in Definition 3.3.1. Der essentielle Teil ist jedoch das Attention-Modell

fattention : Rnembed×m → Rnembed×m.

Wir werden dieses Modell im Folgenden studieren.

4.2.1 Attention

Das Attention-Modell basiert auf der Idee, dass die Eingabedaten X ∈ Rnembed×m

drei verschiedene Repräsentationen haben:

(1) eine Query-Repräsentation Q ∈ Rnatten×m,

(2) eine Key-Repräsentation K ∈ Rnatten×m

(3) und eine Value-Repräsentation V ∈ Rnembed×m

Die (Attention-)Dimension natten der Query- und Key-Repräsentation kann dabei

unterschiedlich zur Einbettungsdimension nembed sein.

Die Spalten von Q, K und V sind die Query-, Key- und Value-Vektoren der

einzelnen Tokens in der Eingabe-MatrixX. Sie werden jeweils durch ein künstliches

neuronales Netz aus X berechnet:

Q = fQ(X), K = fK(X), V = fV (X),

wobei fQ, fK : Rnembed×m → Rnatten×m und fV : Rnembed×m → Rnembed×m mehr-

schichtige neuronale Netze sind. Die Parameter dieser Netze sind Teil der Modell-

parameter θ des gesamten Transformers.

Die Attention-Matrix, welche aus Q,K und V generiert wird, wird nun durch

die folgende Formel definiert (vgl. [25, Gleichung (1)]):

Attention(Q,K, V ) = V · SoftMax(K⊤Q) ∈ Rnembed×m. (4.4)
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Eingabe X

Q = fQ(X)

K = fK(X)

V = fV (X)

Attention(Q,K, V ) Ausgabe

Abbildung 4.3: Schematische Darstellung des Attention Mechanismus.

Hierbei wird die SoftMax-Funktion komponentenweise auf die Spalten der Matrix

K⊤Q ∈ Rm×m angewendet. Dies ergibt eine Wahrscheinlichkeitsverteilung pro

Spalte von K⊤Q. Matrixmultiplikation mit V erzeugt eine gewichtete Summe der

Spalten der Values. Oft wird die Matrix K⊤Q zusätzlich mit 1/
√
nembed skaliert.

Dies der Stabilisierung der Berechnung, wie in [25] erläutert wird.

Man kann sich die Rollen von Q,K und V wie folgt vorstellen. Die Spalten

von Q sind Fragen (Queries), die von den Tokens gestellt werden. Die Spalten von

K sind Schlüsselworte (Keys), die die Tokens beschreiben. Die Spalten von V sind

die eigentlichen Informationen (Values), die die Tokens enthalten. Das Attention-

Modell vergleicht nun eine Fragen mit allen Schlüsselworten, um zu bestimmen,

welche Tokens für die Frage relevant sind. Dabei gehört die i-te Spalte von K⊤Q

zur Frage von Token i. Die SoftMax-Funktion wandelt diese Spalten von K⊤Q in

eine Wahrscheinlichkeitsverteilung um. Die Matrixmultiplikation mit V gewichtet

dann die Value-Vektoren entsprechend dieser Wahrscheinlichkeiten. Das Ergebnis

ist eine neue Repräsentation jedes Tokens, die Informationen aus den relevanten

Tokens im Kontext berücksichtigt.

Wir interpretieren die Gleichung (4.4) geometrisch: Die Einträge von K⊤Q sind

die paarweise inneren Produkte der Spalten von Q und K (siehe (2.3)):

(K⊤Q)i,j = ⟨ki, qj⟩.

Je größer der Eintrag ⟨ki, qj⟩ ist, desto eher ist das Schlüsselwort ki eine Antwort

auf die Frage qj. Wieder wird also der Winkel zwischen Vektoren (siehe (2.1)) als

Bewertung für kontextualen Zusammenhang verwendet!
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Beispiel 4.2.1. Angenommen m = 3. Dann haben Q,K und V alle m = 3

Spalten. Seien diese

Q =

 | | |
q1 q2 q3

| | |

 , K =

 | | |
k1 k2 k3

| | |

 , V =

 | | |
v1 v2 v3

| | |

 .

Dann gilt

K⊤Q =

⟨k1, q1⟩ ⟨k1, q2⟩ ⟨k1, q3⟩
⟨k2, q1⟩ ⟨k2, q2⟩ ⟨k2, q3⟩
⟨k3, q1⟩ ⟨k3, q2⟩ ⟨k3, q3⟩

 .

Die SoftMax-Funktion wird nun auf jede Spalte von K⊤Q angewendet. Die erste

Spalte von SoftMax(K⊤Q) ist also

SoftMax(K⊤Q) =

 | | |
a1 a2 a3

| | |

 , ai = SoftMax

⟨k1, qi⟩
⟨k2, qi⟩
⟨k3, qi⟩

 .

D.h. die j-te Spalte aj ist die durch SoftMax entstehende Wahrscheinlichkeitsver-

teilung, die durch die Anfragen von qj auf die Schlüsselworte k1, k2 und k3 entsteht.

Dementsprechend ist die j-te Spalte der Attention.Matrix die durch aj gewichtete

Summe der Spalten von V :

Attention(Q,K, V ) =

 | | |
V a1 V a2 V a3

| | |

 .

Wir fassen zusammen.

Definition 4.2.1. Das Modell fattention : Rnembed×m → Rnembed×m ist definiert durch

fattention(X) = Attention(Q,K, V ),

wobei Q = fQ(X), K = fK(X) und V = fV (X) die Query-, Key- und Value-

Repräsentationen sind, die durch neuronale Netze fQ, fK und fV aus der Eingabe-

Matrix X berechnet werden.
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Üblicherweise sind die neuronalen Netze fQ, fK und fV einfach lineare Abbil-

dungen (also neuronale Netze mit einer Schicht und ohne Aktivierungsfunktion).

Wir nennen diesen Fall die Standardform des Attention-Modells

Definition 4.2.2. Die Query-, Key- und Value-Repräsentationen in Definition 4.2.1

seien lineare Abbildungen, also Q = WQX, K = WK X und V = WV X, wobei

WQ,WK ∈ Rnatten×nembed und WV ∈ Rnembed×nembed Gewichtsmatrizen sind. Dann

nennen wir das Modell fattention ein Attention-Modell in Standardform.

Sei nun fattention ein Attention-Modell in Standardform. Wir können dann in

(4.4) einsetzen und erhalten fattention(X) = WV X · SoftMax(X⊤W⊤
KW

⊤
QX). Diese

Gleichung verdeutlicht eine Schwäche von Attention-Modellen in Standardform:

Permutieren wir die Spalten von X (was äquivalent dazu ist, die Reihenfolge der

Token zu ändern), so werden die Spalten von fattention(X) entsprechend permu-

tiert. Wir sagen dazu, dass fattention(X) Permutations-äquivariant ist. Das Modell

fattention ist also in gewisser Weise unempfindlich gegenüber der Reihenfolge der

Eingabetoken. Eine Idee, um diesen Nachteil auszugleichen, ist es, ein neurona-

les Netz ρ, welches empfindlich auf Permutation reagiert, zu trainineren und das

Attention-Modell zu fattention(X + ρ(X)) zu modifizieren. In diesem Ansatz nennt

man ρ Positionscodierung.

4.2.2 Weitere Strategien: Masking, Multihead Attention,

Dropout, Skip Connections und Layer Normalisierung

Wenn alle Einträge von K⊤Q in (4.4) vom Transformer verarbeitet werden, be-

deutet dies, dass jedes Token Fragen an alle anderen Token stellen darf. Stellen wir

uns nun aber vor, dass Token i per Vervollständigung aus den vorherigen Token

enstanden ist, dann sollte Token j keine Frage an Token i für alle i > j stellen

können. Um dies im Transformer darzustellen wird eine Technik namesMaskierung

(Masking) eingesetzt. Die Idee ist simpel: Wir ersetzen K⊤Q durch eine andere

Matrix maskiert(K⊤Q)i,j, wobei

maskiert(K⊤Q)i,j =

(K⊤Q)i,j, falls i ≤ j

−∞, falls i > j.
.
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Dies hat den Effekt, dass SoftMax(maskiert(K⊤Q))i,j = e−∞ = 0, falls i > j. Die

Anfrage von qj an ki findet in diesem Fall nicht statt.

Beispiel 4.2.2. Angenommen m = 3. Die Spalten von K seien k1, k2, k3 und die

Spalten von Q seien q1, q2, q3. Dann sind die Einträge von K⊤Q ohne und mit

Masking gegeben durch

K⊤Q =

⟨k1, q1⟩ ⟨k1, q2⟩ ⟨k1, q3⟩
⟨k2, q1⟩ ⟨k2, q2⟩ ⟨k3, q3⟩
⟨k3, q1⟩ ⟨k3, q2⟩ ⟨k3, q3⟩

 ,

maskiert(K⊤Q) =

⟨k1, q1⟩ ⟨k1, q2⟩ ⟨k1, q3⟩
−∞ ⟨k2, q2⟩ ⟨k2, q3⟩
−∞ −∞ ⟨k3, q3⟩

 .

In maskiert(K⊤Q) kann also q1 keine Anfrage an die späteren Token k2 und k3

stellen. Ebenso kann q2 keine Anfrage an k3 stellen.

Die ursprüngliche Publikation zu Attention [25] schlägt einige weitere Kniffe

vor. Der erste davon ist Multihead Attention. Die Idee von Multihead Attention

ist es, mehrere Attention-Modelle parallel zu verwenden und deren Outputs im

Anschluss hintereinander zu legen. Dies ermöglicht es dem Modell, gleichzeitig

mehrere verschiedene Aspekte des Kontextes zu erfassen.

Definition 4.2.3. Wir verwenden die Notation aus Definition 4.2.1. Angenommen

nembed lässt sich als Produkt nembed = nh · h schreiben. Das Modell

X 7→


f
(1)
attention(X)

f
(2)
attention(X)

...

f
(h)
attention(X)

 ∈ Rnembed×m,

wobei, wie in Definition 4.2.1, die

f
(i)
attention : Rnembed×m → Rnh×m, i = 1, . . . , h,

Attention-Modelle sind, heißt Multihead Attention mit h Köpfen.
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Desweiteren empfiehlt [25] die Verwendung von Skip Connections und Layer

Normalisierung. Skip Connections addieren die Eingabe eines Modells zur Ausgabe

des hinzu, bevor diese weitergegeben wird. D.h., Skip Connections verändern den

Transformer (4.3) zu

T (X) = fNN(Z) + Z, wobei Z = fattention(X) +X.

Layer Normalisierung normalisiert die Ausgabe des Attention-Modells, um sicher-

zustellen, dass der empirische Mittelwert (Definition 2.2.5) und die empirische

Varianz (Definition 2.2.7) der Daten 0 und 1 sind. Dies hilft, das Training zu sta-

bilisieren und die Konvergenz zu beschleunigen. Zusätzlich wird die Verwendung

von Dropout empfohlen. Dropout “versteckt” zufällig einige neuronale Verbindun-

gen während des Trainings, um Überanpassung zu verhindern.

4.3 Das Large Language Model: Mathematische

Perspektive

Wir sind nun bereit, das Large Language Model (LLM) mathematisch zu be-

schreiben. Dazu ist es hilfreich zunächst mit der einfachsten Form eines LLMs zu

beginnen. Diese Form besteht aus einem Transformer(-Block) T und kann wie folgt

visualisiert werden.

x τ φ T M SoftMax

Hierbei sind

• x ∈ E der (Eingabe-)Prompt,

• τ der Tokenisierer (siehe Definition 4.1.1), der die Eingabe x auf die Token-

folge t = (t1, . . . , tm) = τ(x) ∈ F abbildet,

• φ : V → Rnembed eine Text-Einbettung (siehe Definition 4.1.1), die die Token-

folge t auf die Einbettungsmatrix X abbildet:

X =

 | |
φ(t1) . . . φ(tm)

| |

 ∈ Rnembed×m,
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• T : Rnembed×m → Rnembed×m ein Transformer,

• M : Rnembed×m → RR eine finale Matrixtransformation, genannt Head, der

Form

M(A) = U Au, U ∈ RR×nembed , u ∈ Rm,

wobei R = #V die Größe des Vokabulars V ist (siehe (4.1)).

Es sei jetzt

z := (M ◦ T ◦ φ ◦ τ)(x) ∈ RR.

Der letzte Schritt ist dann SoftMax auf w anzuwenden. Dies gibt dann eine Wahr-

scheinlichkeitsverteilung auf V:

Pθ(ti | x) = SoftMax(z)i =
ezi∑R
j=1 e

zj
.

Diese Formel gibt die Wahrscheinlichkeit Token i als Vervollständigung des Prompts

x zu wählen an. Hierbei sind die Parameter θ gegeben durch

• die Parameter der Einbettung φ,

• die Parameter des Transformers T ,

• die Matrix U und der Vektor u der Transformation M .

Alternativ können wir mehrere Transformer(-Blöcke) hintereinandern schalten.

x τ φ T1 · · · T3 M SoftMax.

Dies führt zu folgender Definition.

Definition 4.3.1. Ein Large Language Model (LLM) mit s Transformerblöcken

T1, . . . , Ts, Vokabular V = {t1, . . . , tR}, Tokenisierung τ , Texteinbettung φ und

Head M ist ein statistisches Modell der Form

Pθ(ti | x) = SoftMax(z)i, z = (M ◦ Ts ◦ · · · ◦ T1 ◦ φ ◦ τ)(x),

Da ein LLM ein statistisches Modell für Klassifizierung ist (welches Token, also

welche Klasse, kommt als Nächstes?), verwendet man üblicherweise die Cross-

Entropy (siehe Definition 3.2.2) als Verlustfunktion für das Training.
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Ein LLM wie in Definition 4.3.1 vervollständigt einen Prompt x, indem es ein

Token gemäßdem statistischen Modell Pθ(ti | x) generiert. Dieser Token wird dann

an x angehängt. Diese Vervollständigung ist dann ein neuer Prompt, der wiederum

vervollständigt wird. Dieser Prozess wird rekursiv fortgesetzt, bis ein Abbruchkri-

terium erfüllt ist. So erzeugt ein LLM Text.

Beispiel 4.3.1. Wir verwenden ein LLM mit s = 3 Transformern und traini-

neren es auf den Transskripten von 393 Spongebob Episoden [2] (vgl. Jupyter-

Notebook 6). Wir geben dem LLM den Prompt x = “Patrick loves math and”.

Die Ausgabe ist dann z.B.:

Patrick loves math and before you leave me. So I just wanted to get

this stuff, right and I’ll catch them could be back. [sprays in his tears

and throws the entire building].

Dieser Text ergibt zwar wenig Sinn, die Grammatik ist jedoch korrekt und die

Worte stehen alle in richtigem Kontext zueinander, insbesondere im Vergleich zum

von Bi-Gram generierten Text in Beispiel 4.0.2. Dies zeigt, dass das LLM die

Struktur der Sprache gelernt hat, auch wenn der semantische Inhalt nicht komplett

sinnvoll ist.

Bekannte Sprachmodelle wie ChatGPT oder Gemini funktionieren im Grunde

genauso. Das Besondere an diesen Modellen ist die schiere Anzahl an Parametern:

Schätzungen zufolge [7] hat die Version ChatGPT-4o 4 Billionen (4 ·1012) Parame-

ter und Gemini 1.5 Pro 1.5 Billionen Parameter (1.5 ·1012). Der Zusatz “Large” in

“Large Language Model” bezieht sich vor allem auf diese große Anzahl der Para-

meter, mit denen das Modell seine Vorhersagen steuert. Mehr Parameter erhöhen

die Kapazität, komplexe Muster aus Daten zu erkennen und zu verallgemeinern.

Im Gegensatz zu Sprachmodellen, die ohne Transformer arbeiten, kann ein LLM

mit mehr Parametern viel mehr Information verarbeiten. Das liegt daran, dass ein

Transformer mehr als nur die unmittelbare Nachbarschaft in Texten modellieren

kann. Der Aufmerksamkeitsmechanismus lernt Kontext, der über die Positionie-

rung im Text hinausgeht. So können Beziehungen über weite Distanzen im Text

erfasst werden, statt nur die unmittelbare Nachbarschaft zu betrachten. Diese Re-

chenart lässt sich zudem gut parallelisieren, was das Trainieren großer Modelle

praktikabel macht. Diese Fähigkeit ermöglicht die Entstehung so fortschrittlicher

KI-Systeme wie ChatGPT oder Gemini.
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4.3.1 Expert:innen Modelle

Im vorherigen Abschnitt haben wir das LLM definiert (Definition 4.3.1), indem

wir mehrere Transformer hintereinander geschaltet haben. Wir können Transfor-

mer auch parallel schalten und wie bei einem künstlichen neuronalen Netz (siehe

Abschnitt 3.3.3) mehrere Schichten an Transformern verwenden. Diese Art von

Modellen heißen gemischte Expert:innen Modelle (Mixture of Experts).

Hier ist z.B. ein Modell mit zwei Transformer Schichten:

x τ φ

T
(0)
1

T
(0)
2

T
(1)
1 M SoftMax.

w1

w2

Hierbei bezeichnen T
(0)
i die Transformer in der ersten Schicht und T

(1)
1 den Trans-

former in der zweiten Schicht. Wie bei den künstlichen neuronalen Netzen sind die

Verbindungen zwischen den Transformern mit Gewichten versehen. Wie im Bild

sei wj das Gewicht der Verbindung von Transformer T
(0)
j zu T

(1)
1 . Die Eingabe

von T
(1)
1 ist dann X ′ := w1 T

(0)
1 (X)+w2 T

(0)
2 (X). Die Eingabe vonM ist dann wie-

derum T
(1)
1 (X ′). Jeder Transformer ab der zweiten Schickt erhält also als Eingabe

eine gewichtete Summe der Ausgaben der Transformer aus der vorherigen Schicht.

Die Gewichte sind Parameter des Modells.

Dieses Beispiel mit zwei Schichten lässt sich auf beliebig viele Schichten und be-

liebig viele Transformer erweitern. Das folgende Bild zeigt ein LLM mit L Trans-

former Schichten, wobei die i-te Schicht ni Transformer enthält.

x τ φ

T
(0)
1

T
(0)
2

...

T
(0)
n1

· · ·

T
(L)
1

T
(L)
2

...

T
(L)
nL

M SoftMax.
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Es müssen nicht alle Verbindungen vorhanden sein. Zudem können Verbindun-

gen auch “nach links” gehen – genau wie bei den rekurrenten neuronalen Netzen

(siehe Abschnitt 3.3.3).

Der Name gemischtes Expert:innen Modell kommt nun von der Strategie, die

einzelnen Transformer im Netzwerk auf bestimmte Aufgaben zu trainieren. Jeder

Transformer wird als ein:e Expert:in für eine bestimmte Aufgabe betrachtet. Das

Netzwerk als Ganzes lernt dann, welche Aufgabe welche:r Expert:in gestellt werden

muss, um das beste Ergebnis zu erzielen.

Bei modernen gemischten Expert:innen Modellen wird das Sprachmodell in vie-

le spezialisierte Teilnetze zerlegt, die nicht nur aus einem einzelnen Transformer

bestehen müssen, sondern einzelne Rechenblöcke innerhalb der Schichten,. Ein

gezielter Auswahlmechanismus bewertet für jedes Eingabetoken, welche wenigen

Expert:innen voraussichtlich am nützlichsten sind, und aktiviert nur diese; alle an-

deren bleiben inaktiv. So kann das Modell unterschiedliche Muster und Fähigkeiten

arbeitsteilig abdecken, ohne dass jedes Token die Rechenarbeit aller Komponenten

auslösen muss. D.h. nicht alle Expert:innen sind gleichzeitig aktiv. Pro Eingabeto-

ken wird nur ein kleiner Teil aktiv geschaltet. Der entscheidende Vorteil liegt in der

Kombination aus Größe und Effizienz: Die Gesamtzahl der erlernbaren Parameter

kann sehr hoch sein (viele spezialisierte Expert:innen), während der tatsächliche

Rechenaufwand pro Token nur von einer kleinen aktiven Teilmenge abhängt. Da-

durch entsteht hohe Spezialisierung, ohne die Kosten pro Anfrage proportional zur

Gesamtgröße steigen zu lassen. Gleichzeitig muss das System zuverlässig auswählen

und die Arbeit gleichmäßig verteilen, damit keine Expert:innen überlastet werden

und die gewonnenen Fähigkeiten des Modells tatsächlich wirksam werden.

In modernen KI-Sprachsystemen wird die praktische Ausrichtung durch nach

dem Training stattfindende Feinabstimmung auf Anweisungen gewährleistet. Die-

se Feinabstimmung passiert u.A. durch menschliches Feedback und macht aus ei-

nem LLM eine hilfreiche, verlässliche Assistenz. Gemischte Expert:innen Model-

le ergänzen dies um interne Spezialisierung: Sie verbinden eine breit skalierbare

Architektur mit gezielter Aktivierung der passenden Teilnetze. So können solche

Systeme zugleich sehr groß und effizient sein.
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4.3.2 Übungsaufgaben

Aufgabe 4.3.1. Führen Sie das sechste Jupyter-Notebook über Large Langua-

ge Models aus und versuchen Sie jeden Schritt nachzuvollziehen. Dieses Notebook

basiert in großen Teilen auf dem Blog-Post Generative transformer from first prin-

ciples in Julia von Lior Sinai [24].

Aufgabe 4.3.2. In dieser Vorlesung haben wir die mathematischen Grundlagen

von KI und Datenanalyse kennengerlernt. Ein großer Fokus lag dabei auf soge-

nannten Modellen, inbesondere künstliche neuronale Netze und Large Language

Models. Diskutieren Sie untereinander, ob und wie diese Inhalte in den Schullehr-

plan integriert werden könnten. Was wären geeignete Themenbereiche? Welche

Altersstufen sind geeignet? Welche Vorkenntnisse werden benötigt? Welche Kom-

petenzen sollten vermittelt werden? Ist der mathematische Ansatz sinnvoll für den

Schulunterricht? Oder braucht es einen umfassenderen Zugang, auch soziale und

ethische Aspekte einbezieht? Wie könnte eine Fortbildung für Lehrkräfte aussehen,

die diese Themen unterrichten sollen?

Aufgabe 4.3.3. Überlegen Sie, was für Sie das wichtigste und interessanteste ist,

was Sie in dieser Vorlesung über KI gelernt haben. Teilen Sie – wenn Sie möchten –

Ihre Gedanken über Social Media. Versuchen Sie Ihre Gedanken so zu formulieren,

das es für ein breites Publikum verständlich ist. Evaluieren Sie die Rückmeldungen,

die Sie erhalten. Was denken Sie ist die allgemeine Wahrnehmung von KI? Wie

unterscheidet sich diese von Ihrer eigenen Sichtweise?

Aufgabe 4.3.4. Lesen Sie die Masterarbeit “Growing up with AI” [12]. Welche

Implikation ergeben sich für den Umgang mit Schüler:innen, die mit KI-Systemen

aufwachsen? Wie können Lehrkräfte und Schulen diese Herausforderungen adres-

sieren?
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Aufgabe 4.3.5. Beim Einfügen der Daten zur Referenz [12] wurde ein LLM be-

nutzt. Dabei wurden männliche Pronomen (“er” und “seine”) von der KI verwen-

det, obwohl die Autorin Stefania Druga weiblich ist. Was könnte der Grund dafür

sein?

Aufgabe 4.3.6. Hören Sie die ARD Audiodokumentation “Künstliche Nähe –

Doku über KI, Vertrauen und Abhängigkeit” [3] (Achtung: Triggerwarnung wegen

Einsamkeit und Anorexie). Reflektieren Sie den Inhalt vor dem Hintergrund, was

Sie in der Vorlesung gelernt haben.
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5 Abschließende Worte

Die Veröffentlichung von ChatGPT-3 Ende 2022 hat weltweit einen KI-Hype aus-

gelöst. Diesem Hype müssen sich auch Lehrer:innen im Unterrichtskontext stellen.

So gibt es diverse KI-Tools, die z.B. bei der Klausurkorrektur helfen sollen. Die-

se basieren oftmals auf sogenannten Large Language Models (LLMs). Doch wie

wir in dieser Vorlesung ausgearbeitet haben, sind LLMs statistische Modelle und

daher von Natur aus mit Unsicherheit behaftet. Dies wird in der Öffentlichkeit

üblicherweise mit Halluzinationen bezeichnet, was jedoch verschleiert, dass die

Unsicherheit Teil des Modells ist. Diese Modelle verstehen nicht, sondern gene-

rieren zufälligen Text. Dementsprechend sollte man vorsichtig bei der Benutzung

von LLMs für kritische Aufgaben wie Klausurkorrekturen sein. Die Artikel [20,23]

beschreiben dies eindrücklich.

Das Ziel dieser Vorlesung war es daher, Lehrkräften verständlich zu machen, wie

KI-Modelle funktionieren. Ein größer Fokus lag dabei auf LLMs, auf denen auch

ChatGPT oder Gemini basieren. Indem Lehrer:innen lernen, wie diese Modelle

funktionieren, können Sie sie kritisch einordnen und den Schüler:innen Medien-

kompetenz mit auf den Weg geben.

Dies geht über die bloße Nutzung von KI-Chatbots für schulische Aufgaben wie

z.B. Hausaufgaben hinaus. Menschen, insbesondere Kinder, neigen dazu, Maschi-

nen zu anthropomorphisieren. Stefanian Druga hat dies in ihrer Arbeit “Growing

up with AI” [12] bereits 2018 wie folgt zusammengefasst:

“[...] humans anthropomorphize objects and are capable of engaging

socially with machine.”

und weiter

“This leads us to question how much children could be influenced by AI

now that it is becoming personified, embodied and able to lead conver-

sations?”

Lehrer:innen spielen eine zentrale Rolle bei der Beantwortung dieser Frage.
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5 Abschließende Worte

Darüber hinaus ist die öffentliche Debatte über KI meistens wirtschaftlicher oder

technologischer Art. So heißt es auf der Website der Arbeitsgruppe “Kritikalität

KI-basierter Systeme” des Weizenbaum-Instituts [4]

“Obwohl sie den Alltag der Bürger:innen bereits in vielfältigster Weise

beeinflussen, agieren viele KI-Systeme bisher als Blackbox. Ihre öffentliche

Wahrnehmung ist maßgeblich geprägt von Misstrauen, aber auch von

Unwissenheit über das theoretische Gerüst dieser Systeme.”

Dazu passt der bereits 2019 in der ZEIT erschienene Artikel von Harald Wel-

zer [27]. Dort schreibt er, dass “wir Digitalisierung endlich als gesellschaftspoliti-

sche Frage begreifen müssen”. Er vermisst die Diskussion um die “flächendeckende

Implementierung einer Großtechnologie”.

Den allgegenwärtigen Einfluss von KI-Modellen zu moderieren oder sogar zu

steuern ist eine wichtige gesellschaftliche Aufgabe der nahen Zukunft. Dabei ist

es wichtig die Mathematik hinter der KI zu verstehen. Lehrer:innen kommt dabei

eine entscheidende Rolle zu.
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